A double-cell electrochemical technique was used to study H permeation in amorphous alloys. The H diffusivity versus H-content relationships were determined for various alloys (table 28). In each alloy, the H diffusivity increased markedly with increasing H concentration. This implied that there existed a broad range of energy states for H incorporation in the amorphous material. A key experimental feature was the sputter-deposition of a thin passivating surface film immediately after the sputter-deposition of Cu-Ti films.

Hydrogen Permeation in Amorphous Cu-Ti and Pd-Si Alloys. Y.S.Lee, D.A.Stevenson: Journal of Non-Crystalline Solids, 1985, 72[2-3], 249-66

 

Table 23

Diffusivity of H2 in Cu-Pd Alloys at 25C

 

Cu(at%)

Pressure(atm)

Phases Present

D(cm2/s)

44.7

0

α, β

1.4 x 10-6

44.7

5

α, β

9.4 x 10-6

44.7

120

α, β

2.5 x 10-5

47.8

0

α, β

9.0 x 10-6

47.8

5

α, β

2.3 x 10-6

47.8

120

α, β

5.3 x 10-5

50.1

0

α, β

1.4 x 10-5

50.1

5

α, β

4.3 x 10-5

50.1

120

β

5.6 x 10-5

52.5

0

α, β

4.3 x 10-5

52.5

5

β

5.4 x 10-5

52.5

6.7

β

4.9 x 10-5

55.4

0

β

4.3 x 10-5

55.4

5

β

4.6 x 10-5

57.1

0

β

4.4 x 10-5

57.1

5

β

5.2 x 10-5

 

 

Table 24

Parameters for H Diffusion in Disordered Cu3Pd

 

Temperature (C)

Do (cm2/s)

E (kcal/g-atom)

300-410

1.80 x 10-3

8.50

480-700

2.80 x 10-3

9.65

 

Table 25

Parameters for H Permeation in Disordered Cu3Pd

 

Temperature (C)

Po (cm mm/s atm½)

E (kcal/g-atom)

300-410

1.06 x 10-2

7.77

480-700

2.15 x 10-2

8.30

 

 

Table 26

Parameters for H Diffusion in Ordered Cu3Pd at 300 to 400C

 

Annealing Time at 400C (h)

Do (cm2/s)

E (kcal/g-atom)

20

5.30 x 10-4

7.75

45

3.35 x 10-4

7.30

70

3.35 x 10-4

7.30

 

Table 27

Parameters for H Permeation through Ordered Cu3Pd at 300 to 400C

 

Annealing Time(h) at 400C

Po (cm mm/s atm½)

E (kcal/g-atom)

20

2.15 x 10-2

8.30

45

1.60 x 10-2

8.00

70

1.60 x 10-2

8.00

 

Table 28

Parameters for H Diffusion in Cu-Ti Amorphous Alloys

 

Material

H/M

Do (cm2/s)

E (kcal/mol)

Cu48Ti52

0.13

9990

18.6

Cu48Ti52

0.22

185

15.6

Cu48Ti52

0.28

0.78

14.8

Cu48Ti52

0.36

0.22

13.6