A study was made of the diffusion and trapping of Xe, in ion-bombarded single crystals with various vacancy concentrations. In the limiting case of low gas concentrations, no significant effect of vacancy concentration upon gas release was observed. This release could be described by:

D (cm2/s) = 10 exp[-1.4(eV)/kT]

The data were consistent with an interstitial diffusion mechanism or, more likely, with Xe being mobile in small vacancy clusters of constant size (such as vacancy pairs) even in non-bombarded material.

Rare Gas Mobility in Pure and Doped Potassium Bromide. H.J.Matzke: Zeitschrift für Naturforschung, 1967, 22a[4], 507-18

 

Table 18

Tracer Diffusion of 42K in KBr-LiBr Melts

 

LiBr (%)

Temperature (C)

D (cm2/s)

4

750

6.31 x 10-5

24.5

659

4.90 x 10-5

24.5

759

6.30 x 10-5

36

557

3.91 x 10-5

51.5

360

1.16 x 10-5

51.5

363

9.80 x 10-6

51.5

401

1.82 x 10-5

51.5

456

2.17 x 10-5

51.5

507

3.07 x 10-5

51.5

548

3.12 x 10-5

51.5

554

3.31 x 10-5

51.5

642

4.91 x 10-5

51.5

655

5.37 x 10-5

51.5

761

6.76 x 10-5

76

496

3.38 x 10-5

76

535

2.92 x 10-5

76

643

4.33 x 10-5

76

747

8.44 x 10-5

99

566

4.93 x 10-5

99

571

5.07 x 10-5

99

669

6.80 x 10-5

99

750

8.50 x 10-5

 

Table 19

Tracer Diffusion of 6Li in KBr-LiBr Melts

 

LiBr (%)

Temperature (C)

D (cm2/s)

4

750

6.86 x 10-5

24.5

659

5.74 x 10-5

24.5

736

6.95 x 10-5

24.5

759

7.88 x 10-5

36

555

4.22 x 10-5

36

557

4.31 x 10-5

51.5

360

1.91 x 10-5

51.5

363

1.80 x 10-5

51.5

401

2.64 x 10-5

51.5

456

3.21 x 10-5

51.5

507

4.12 x 10-5

51.5

548

4.62 x 10-5

51.5

554

5.36 x 10-5

51.5

642

6.60 x 10-5

51.5

655

7.39 x 10-5

51.5

761

9.51 x 10-5

76

496

5.22 x 10-5

76

535

5.89 x 10-5

76

643

8.72 x 10-5

76

747

1.01 x 10-4

99

566

8.54 x 10-5

99

571

8.85 x 10-5

99

669

1.05 x 10-4

99

750

1.21 x 10-4