The diffusion of 65Zn was measured by using residual activity techniques at 312 to 509C. The results could be described by:

7.06at%Zn:     D (cm2/s) = 1.70 x 10-1 exp[-112.46(kJ/mol)/RT]

15.17at%Zn:     D (cm2/s) = 3.24 x 10-1 exp[-113.17(kJ/mol)/RT]

24.24at%Zn:     D (cm2/s) = 2.09 x 10-1 exp[-108.27(kJ/mol)/RT]

31.27at%Zn:     D (cm2/s) = 2.88 x 10-1 exp[-105.67(kJ/mol)/RT]

41.51at%Zn:     D (cm2/s) = 2.29 x 10-1 exp[-103.54(kJ/mol)/RT]

52.52at%Zn:     D (cm2/s) = 1.62 x 10-1 exp[-100.53(kJ/mol)/RT]

53.28at%Zn:     D (cm2/s) = 5.75 x 10-1 exp[-106.64(kJ/mol)/RT]

55.04at%Zn:     D (cm2/s) = 6.92 x 10-1 exp[-108.10(kJ/mol)/RT]

56.85at%Zn:     D (cm2/s) = 1.51 x 100 exp[-111.87(kJ/mol)/RT]

57.28at%Zn:     D (cm2/s) = 5.75 x 10-1 exp[-106.81(kJ/mol)/RT]

57.50at%Zn:     D (cm2/s) = 1.35 x 100 exp[-111.41(kJ/mol)/RT]

The logarithm of the pre-exponential factor, and the activation energy (when normalized with respect to the average melting point) were linear functions of the Zn concentration.

J.Cermak, K.Ciha, J.Kucera: Physica Status Solidi A, 1980, 62[2], 467-74