A pulsed-field gradient nuclear magnetic resonance spin echo technique was used to measure the diffusivities in NbHx. It was found that the activation energy increased with increasing H concentration, whereas the pre-exponential factor was not markedly concentration-dependent:
NbH0.10: D (cm2/s) = 3.2 x 10-4 exp[-0.115(eV)/kT]
NbH0.33: D (cm2/s) = 4.9 x 10-4 exp[-0.142(eV)/kT]
NbH0.55: D (cm2/s) = 1.0 x 10-3 exp[-0.168(eV)/kT]
NbH0.70: D (cm2/s) = 7.2 x 10-4 exp[-0.174(eV)/kT]
NbH0.89: D (cm2/s) = 5.6 x 10-4 exp[-0.164(eV)/kT]
The results were not consistent with the random occupation of tetrahedral sites, and it was suggested that repulsive interactions existed between H atoms on nearest-neighbor sites.
P.E.Mauger, W.D.Williams, R.M.Cotts: Journal of the Physics and Chemistry of Solids, 1981, 42[9], 821-6