The migration of H in the alloy (tables 25 and 26) was investigated by using the time-lag technique. Annealing the alloy at 400C led to the establishment of short-range order, and resulted in a decrease in the activation energies for H permeation and diffusion (tables 27 and 28).
V.B.Vykhodets, V.A.Goltsov, P.V.Geld: Fizika Metallov i Metallovedenie, 1968, 26[5], 933-5
Table 25
Parameters for H Diffusion in Disordered Cu3Pd
Temperature (C) | Do (cm2/s) | E (kcal/g-atom) |
300-410 | 1.80 x 10-3 | 8.50 |
480-700 | 2.80 x 10-3 | 9.65 |
Table 26
Parameters for H Permeation in Disordered Cu3Pd
Temperature (C) | Po (cm mm/s atm½) | E (kcal/g-atom) |
300-410 | 1.06 x 10-2 | 7.77 |
480-700 | 2.15 x 10-2 | 8.30 |
Table 27
Parameters for H Diffusion in Ordered Cu3Pd at 300 to 400C
Annealing Time at 400C (h) | Do (cm2/s) | E (kcal/g-atom) |
20 | 5.30 x 10-4 | 7.75 |
45 | 3.35 x 10-4 | 7.30 |
70 | 3.35 x 10-4 | 7.30 |
Table 28
Parameters for H Permeation through Ordered Cu3Pd at 300 to 400C
Annealing Time at 400C (h) | Po (cm mm/s atm½) | E (kcal/g-atom) |
20 | 2.15 x 10-2 | 8.30 |
45 | 1.60 x 10-2 | 8.00 |
70 | 1.60 x 10-2 | 8.00 |