Determination of the Stress Distribution at the Interface Metal-Oxide: Numerical and Theoretical Considerations


Article Preview

In this paper we give a brief presentation of the approaches we have recently developed on the oxidation of metals. Firstly, we present an analytical model based on non-equilibrium thermodynamics to describe the reaction kinetics present during the oxidation of a metal. Secondly, we present the molecular dynamics results obtained with a code specially tailored to study the oxidation and growth of an oxide film of aluminium. Our simulations present an excellent agreement with experimental results.



Defect and Diffusion Forum (Volumes 237-240)

Edited by:

Prof. Marek Danielewski, Robert Filipek, Prof. Rafal Abdank-Kozubski, Witold Kucza, Paweł Zięba and Zbigniew Żurek




S. Garruchet et al., "Determination of the Stress Distribution at the Interface Metal-Oxide: Numerical and Theoretical Considerations", Defect and Diffusion Forum, Vols. 237-240, pp. 145-150, 2005

Online since:

April 2005




[1] K.H. Ebert, P. Deuflhard and W. Jäger: Modelling of chemical reaction systems (Chemical Physics 18, Springer-Verlag 1980).

[2] P. Glandsorff, I. Prigogine: Thermodynamic theory of structure, stability and fluctuations (Wiley - Interscience 1971).

[3] C. Vidal and H. Lemarchand: La réaction créatrice (Hermann -France 1988).

[4] G. Bertrand: In Non linear phenomena in materials science. p-287 ( Editors: L. Kubin and G. Martin, 1987).

[5] J.M. Salazar and M. Lallemant: Solid State Ionics Vol. 50 (1992), pp.233-240.

[6] J. Philibert: Diffusion et transport de matière dans les solides ( Les éditions de physique France 1990).

[7] M.S. Murray, S. Daw and M. I. Baskes: Phys. Rev. B Vol 29 (1984), pp.6443-6453.

[8] M.W. Finnis & J.E. Sinclair: Phil. Mag A Vol. 50 (1984), p.45; F. Ercolessi and J.B. Adams: Europhys. Lett. 26 (8) (1994), pp.583-588.

[9] K.W. Jacobsen, J.K. Norskov and M.J. Puska: Phys. Rev. B Vol. 14 (1987), pp.7423-7442 ; K.W. Jacobsen and J. Schiotz: Nature Materials Vol. 1, (2002) pp.15-16.

[10] V. Yamakov, D. Wolf, J.M. Salazar, S. R. Phillpot and H. Gleiter: Acta. Mater Vol. 49 (2001), pp.2713-2722.


[11] H. Van Swygenhoven: Science Vol. 296 (2002), pp.66-67; Ju Li, A.H.W. Ngan, P. Gumbsch, Acta. Mater Vol. 51 (2003), pp.5711-5742; and references therein.

[12] V. Yamakov, D. Wolf, S. R. Phillpot, A.K. Mukherjee and H. Gleiter: Nature Materials Vol. 1 (2002), pp.1-4.

[13] R. Miller and E.B. Tadmor: Journal of Compute-Aided Materials Design Vol. 9 (2002), pp.203-239.

[14] F.F. Abraham, J.Q. Broughton, N. Bernstein, and E. Kaxiras: Computers in Physics Vol. 12 (6) (1998), pp.538-546.

[15] J. Stefan: Ann. Phys. U. Chem (Wiedemann) (N.F. ) Vol. 42 (1891), p.29.

[16] S.R. De Groot and P. Mazur: Non-equilibrium Thermodynamics (North-Holland Publishing Co., Amsterdam 1963).

[17] M. Cherkaoui, M. Berveiller, H. Sabar: Int. Journal of Plasticity Vol. 14 (1998), p.597.

[18] S. Garruchet, T. Montesin, H. Sabar, M. Salazar and G. Bertrand: Material Science Forum, Vol. 461-464 (2004), p.611.


[19] F.H. Streitz and J. W. Mintmire, Phys. Rev. B Vol. 50 (1994), p.11996.

[20] D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications ( 2nd ed. Academic Press, San Diego, 1996).

[21] V.A. Bakaev, Phys Rev B Vol. 60 (1999), p.10723.

[22] N. Cabrera and NF. Mott, Rep. Prog. Phys. Vol. 12 (1948), p.163.

[23] L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar and E.J. Mittemeijer: J. Appl. Phys. Vol. 92 (2002), p.1649.

[24] T. Campbell, R.K. Kalia, A. Nakano, P. Vashishta, S. Ogata, and S. Rodgers, Phys. Rev. Lett. Vol. 82 (1999), p.4866.

Fetching data from Crossref.
This may take some time to load.