Formation of Nanostructure during High-Pressure Torsion of Al-Zn, Al-Mg and Al-Zn-Mg Alloys

Abstract:

Article Preview

Structure and phase composition of binary Al–Zn, Al–Mg and ternary Al–Zn–Mg alloys were studied before and after high pressure torsion (HPT) with shear strain 300. The size of (Al) grains and crystals of reinforcing second phases decreases drastically after HPT reaching nanometer range. As a result of HPT, the Zn-rich (Al) supersaturated solid solution decomposes completely and reaches the equilibrium state corresponding to room temperature. The decomposition is less pronounced for Al–Mg and Al–Zn–Mg alloys. We conclude that the severe plastic deformation of supersaturated solid solutions can be considered as a balance between deformation-induced disordering and deformation-accelerated diffusion towards the equilibrium state.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Edited by:

M. Danielewski, R. Filipek, R. Kozubski, W. Kucza, P. Zieba, Z. Zurek

Pages:

739-744

DOI:

10.4028/www.scientific.net/DDF.237-240.739

Citation:

A.A. Mazilkin et al., "Formation of Nanostructure during High-Pressure Torsion of Al-Zn, Al-Mg and Al-Zn-Mg Alloys", Defect and Diffusion Forum, Vols. 237-240, pp. 739-744, 2005

Online since:

April 2005

Export:

Price:

$35.00

[1] H. Gleiter: Acta Mater 48 (2000), p.1.

[2] R.Z. Valiev, A.V. Korznikov and R.R. Mulyukov: Mater. Sci. Eng. A168 (1993), p.141.

[3] R.Z. Valiev: Ann. Chim. Fr. 21 (1996), p.369.

[4] F.V. Nolfi Jr. Editor: Phase Transformations during Irradiation (Applied Science Publishers, London, New-York 1983).

[5] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Progr. Mater. Sci. 45 (2000), p.103.

[6] T.B. Massalski et al. editors: Binary Alloy Phase Diagrams (ASM International, Materials Park 1993).

[7] N.L. Peterson and S.J. Rothman: Phys. Rev. B 1 (1970), p.3264.

[8] I. Gödény, D.L. Beke and F.J. Kedves: Phys. Stat. Sol. (a) 13 (1972), K 155.

[9] S.J. Rothman, N.L. Peterson, L.J. Nowicki and L.C. Robinson: Phys. Stat. Sol. B 63 (1974), K 29.

[10] J. Friedel: Dislocations (Pergamon Press, Oxford 1964).

[11] G. Saada: Acta Met. 9 (1961), p.965.

[12] D.L. Beke, I. Gödény and F.J. Kedves: Phil. Mag. A 47 (1983), p.281.

[13] D.L. Beke, I. Gödény and F.J. Kedves: Trans. Jap. Inst. Met. Suppl. 27 (1986), p.649.

[14] P. Zieba, A. Pawlowski and W. Gust: Def. Diff. Forum 194 (2001), p.1759.

[15] T. Fujita, H. Hasegawa, Z. Horita and T.G. Langdon: Def. Diff. Forum 194 (2001), p.1205.

[16] T. Fujita, Z. Horita and T.G. Langdon: Phil. Mag A 82 (2002), p.2249.

[17] Y. Minamino, Y. Toshimi, A. Shinomura, M. Shimada, M. Koizumi, N. Ogawa, J. Takahashi and H.J. Kimura: Mater. Sci. 18 (1983), p.2679.

[18] G. Erdelyi, W. Lojkowski, D.L. Beke, I. Gödeny and F.J. Kedves: Phil. Mag. A 56 (1987), p.673.

In order to see related information, you need to Login.