Diffusion in the Interface Region of Ti/TiAl-Nb Bonding


Article Preview

Diffusion in the interface regions of lightweight heatproof quality titanium and titanium/aluminum alloys was investigated. We studied the diffusion of aluminum from intermetallide to titanium alloy. The concentration of other chemical elements and microhardness has been measured in diffusion region formed in the solid titanium alloy. The interface region includes a transition zone from the initially solid Ti-alloy and the molten TiAl-Nb intermetallic substrate. The width of the interface region after diffusion bonding is 45-60 µm. The titanium content decreases and aluminum content increases starting from surface up to 120-150 µm in depth in solid titanium alloy. As a result of diffusion, the intermetallic Ti3Al thin layer was formed in the transition zone in the Ti-alloy substrate. The microporosity was also formed in the interface region.



Edited by:

B.S. Bokstein and B.B. Straumal




L. A. Kommel, "Diffusion in the Interface Region of Ti/TiAl-Nb Bonding", Defect and Diffusion Forum, Vol. 249, pp. 193-200, 2006

Online since:

January 2006





[1] D. Kupp, D. Claar and K. Flemming: Advances in Powder Metallurgy & Particulate Materials, (Wiley, London 2002), pp.2-10 µm 10 µm 300 nm 1 µm.

[2] L. Kommel, G. Teterin and R. Traksmaa: In EUROMAT-2001 (Rimini, Italy, 10-14 June 2001), p.339.

[3] B.N. Kodess, G.P. Teterin, L.A. Kommel and V.K. Ovcharov: MRS Symp. Proc. Vol. 552 (1999), p. KK8. 37. 1.

[4] V. Panin, Y. Burakov, A. Volkov, N. Chainov, L. Miagkov and D. Lukin: Materialovedenie (2005) in press.

[5] R. Bohn, T. Klassen and R. Bormann: Acta Mater. Vol. 49 (2001), p.299.

[6] R.M. Imaev, N.K. Gabdullin, G.A. Salishchev, O.N. Senkov, V.M. Imaev and F.H. Froes: Acta Mater. Vol. 47 (1999), p.1809.

[7] V.I. Emel'yanov and D.V. Babak: Applied Physics A, Mater. Sci. Processing (2002) / Digital Object Identifier (DOI) 10. 1007/s003390100980.

[8] H.N. Lee, D.R. Johnson, H. Inui, M.H. Oh, D.M. Wee and M. Yamaguchi: Acta mater. Vol. 48 (2000), p.3221.

[9] Y. Koizumi, T. Nakano and Y. Umakoshi: Acta Mater. Vol. 47 (1999), p. (2019).

[10] G. Pavlov and L. Kommel: USSR Patent N1448490, (1986).

[11] M. Holmquist, V. Recina and B. Pettersson: Acta Mater. Vol. 47 (1999), p.1791.

[12] G.P. Teterin and A.E. Volkov: Forg. Stamp. Prod. Vol. 7 (1994), p.2.

[13] S.J. Lee, S.K. Wu and R.Y. Lin: Acta Mater. Vol. 46 (1998), p.1283.

[14] B.N. Kodess, L.A. Kommel, G.P. Teterin and V.K. Ovcharov: in Investigations and Applications of Severe Plastic Deformation, Eds. T.C. Lowe and R.Z. Valiev (Kluwer Academic Publishers, Amsterdam 2000), p.211.

DOI: https://doi.org/10.1007/978-94-011-4062-1_28

[15] Ren Jiangwei, Li Yajiang and Feng Tao: Mater. Lett. Vol. 56 (2000), p.647 Prof. A. Pokoev, Dr. L. Kommel Prof. L. Klinger, Dr. E. Khandogina, Dr. A. Petelin.