DIGM - Entropy Balance and Free Energy Release Rate


Article Preview

A model of alloying in the three-layer thin-film system at the low temperature is constructed. Solid solution formation takes place as a result of the diffusion-induced grain boundary migration (DIGM). The unknown parameters are determined from the set of the equations for: (1) grain boundary diffusion along the moving planar phase boundary; (2) the entropy balance in the region of the phase transformation moving with constant velocity; (3) the maximum rate of the free energy release. We consider the model system with complete solubility of the components. The main parameters are self-consistently determined using thermodynamic and kinetic description in the frame of the regular solution model. The model allows determining the concentration distribution along the planar moving phase boundary, its velocity, the thickness of the forming solid solution layer and the limiting average concentration in this layer.



Edited by:

B.S. Bokstein and B.B. Straumal




Y.A. Lyashenko and A. Gusak, "DIGM - Entropy Balance and Free Energy Release Rate", Defect and Diffusion Forum, Vol. 249, pp. 81-90, 2006

Online since:

January 2006




[1] M. Hillert and G.R. Purdy: Acta. Metal. Vol. 26 (1978), p.333.

[2] B.S. Bokstein, Ch. V. Kopetsky and L. S. Shvindlerman: Thermodynamics and Kinetics of Grain Boundaries (Moscow: Metallurgiya 1980) (in Russian).

[3] I. Kaur and W. Gust: Fundamentals of Grain and Interphase Boundary Diffusion (Stuttgart: Ziegler Press 1989).

[4] Y.J.M. Brechet and G.R. Purdy: Acta. Metal. Vol. 37 (1989), p.2253.

[5] P.G. Shewmon: Acta Metal. Vol. 29 (1981), p.1567.

[6] M. Hillert: Scripta Metal. Vol. 17 (1983), p.237.

[7] Y.I. M. Brechet and G. R. Purdy: Acta Metal. Vol. 37 (1989), p.2253.

[8] M. Kajihara and W. Gust: Scripta Metal. Vol. 38 (1998), p.1621.

[9] E. Rabkin: Scripta Metal. Vol. 30 (1994), p.1413.

[10] J.W. Cahn, P.C. Fife and O. Penrose: Acta. Metal. Vol. 45 (1997), p.4397.

[11] P. Zieba: Local Characterization of the Chemistry and Kinetics in Discontinuous Solid State Reactions (Cracow: IMMS 2001).

[12] D. Liu, W. A. Miller and K. T. Aust: Acta Metal. Vol. 37 (1989), p.3367.

[13] F. I. A. den Broeder and S. Nakahara: Scripta Metal. Vol. 17 (1989), p.3367.

[14] C. Y. Ma, E. Rabkin, W. Gust and S. E. Hsu: Acta Metal. Vol. 43 (1995), p.3113.

[15] M. Moriyama and M. Kajihara: ISIJ International Vol. 38 (1998), p.86.

[16] M. Hillert: Acta Mater. Vol. 47 (1999), p.4481.

[17] K. Lucke and K. Detert: Acta Metal. Vol. 5 (1957), p.628.

[18] M. I. Mendelev and D. I. Srolovitz: Acta Mater. Vol. 49 (2001), p.589.

[19] M. Hillert: Acta Mater. Vol. 52 (2004), p.5289.

[20] J.W. Cahn: Acta. Metal. Vol. 7 (1959), p.18.

[21] H. Ziegler: In Progress in solid mechanics, ed. by I.N. Sneddon and R. Hill (Amsterdam: North-Holland, V. 4, Ch. 2., 1963).

[22] S.R. De Groot and P. Mazur: Nonequilibrium Thermodynamics (Amsterdam: North-Holland 1962).

[23] I. Gyarmati: Nonequilibrium Thermodynamics (Berlin: Springer 1970).

[24] J.S. Kirkaldy and D.J. Young: Diffusion in the condensed state (London: The Institute of Metals, 1987).

[25] A. Bogel and W. Gust: Zt. Metallkde Vol. 79 (1988), p.296.

[26] Yu. A. Lyashenko: Tech. Phys. Lett. Vol. 30, № 2 (2004), p.109 (Translated from Pis'ma v Zhurnal Tekniheskoi Fiziki Vol. 30, № 3 (2004), p.54).

[27] V.T. Borisov, V.M. Golikov and G.V. Scherbedinskiy: Phys. Met. Metallogr (USSR) Vol. 17 (1964), p.80.

[28] D. Gupta, K. Vieregge and W. Gust: Acta Mater. Vol. 47 (1999).