Thermal Conductivity in Nanoscale Lennard-Jones Systems: Size Effects in the Fluid and Solid Phases


Article Preview

We simulate fluid and solid Lennard-Jones argon systems via non-equilibrium molecular dynamics and study how the system behaves under an imposed temperature gradient until it reaches the stationary state, from where the thermal conductivity is calculated. We show that transient pressure waves propagate in the system giving rise to a density oscillation pattern. Based on the damping of this pattern we estimate the time needed to reach the stationary state. We also show that thermal conductivity is size independent in the fluid phase, while it increases until the Casimir limit in the solid phase.



Defect and Diffusion Forum (Volumes 258-260)

Edited by:

Prof. Andreas Öchsner and José Grácio




D.F. Botelho et al., "Thermal Conductivity in Nanoscale Lennard-Jones Systems: Size Effects in the Fluid and Solid Phases", Defect and Diffusion Forum, Vols. 258-260, pp. 310-315, 2006

Online since:

October 2006




[1] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin and S. R. Phillpot : J. Appl. Phys. Vol 93 (2003), p.793.

[2] R. Kubo: Reports on Progress in Physics Vol 29 (1966), p.255.

[3] W. A. Ashurst: Adv. in Thermal Conductivity (1973), p.89.

[4] A. Tenenbaum, G. Ciccotti and R. Gallico: Phys. Rev. A Vol 25 (1982), p.2778.

[5] R. D. Mountain and R. A. MacDonald: Phys. Rev. B Vol 28 (1983), p.3022.

[6] A. Baranyai: Phys. Rev. E Vol 54 (1996), p.6911.

[7] F. Müller-Plathe: J. Chem. Phys. Vol 106 (1997), p.6082.

[8] D. Bedrov and G. Smith: J. Chem. Phys. Vol 113 (2000), p.8080.

[9] T. Terao and F. Müller-Plathe: J. Chem. Phys. Vol 122 (2005), 081103.

[10] Z. Huang and Z. Tang: Physica B Vol 373 (2006), p.291.

[11] P. K. Schelling, S. R. Phillpot and P. Keblinsky: Phys. Rev. B Vol 65 (2002), 144306.

[12] R. Volgelsang, C. Hoheisel and G. Ciccotti: J. Chem. Phys. Vol 86 (1987), p.6371.

[13] H. B. G. Casimir: Physica Vol 5 (1938), p.495.

[14] P. A. Egelstaff: Introduction to the Liquid State (Academic Press, 1967).