Electrocatalytic Studies of Oxygen Reduction by Lanthanum Barium Manganate

Abstract:

Article Preview

The electrocatalysis of the oxygen reduction reaction by Lanthanum Barium Manganate, (La0.5Ba0.5MnO3) (LBM) has been studied by cyclic voltammetry using the rotating ring-disc electrode technique (RRDE) in alkaline medium. From the ring-disc data and other kinetic parameters it has been assumed that the oxygen reduction occurs by dissociative chemisorption at low overpotentials. At higher overpotentials, the formation of hydrogen peroxide (HO2 - in this case) has been observed on this electrocatalyst. The apparent exchange current density value for oxygen reduction on LBM has been found to be 4 x 10-8 Acm-2, while the corresponding Tafel slope is 0.115 V per decade. The possible reaction mechanism for electroreduction of oxygen on this oxide catalyst has been discussed.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 258-260)

Edited by:

Prof. Andreas Öchsner and José Grácio

Pages:

327-332

Citation:

D. M.F. Santos and C. A.C. Sequeira, "Electrocatalytic Studies of Oxygen Reduction by Lanthanum Barium Manganate", Defect and Diffusion Forum, Vols. 258-260, pp. 327-332, 2006

Online since:

October 2006

Export:

Price:

$38.00

[1] S.P. Jiang: Sol. State Ionics Vol. 146 (2002), p.1.

[2] R. Pelosato, I.N. Sora, G. Dotelli, R. Ruffo and C.M. Mari: J. Eur. Ceram. Soc. Vol. 25 (2005), p.2587.

[3] M. Petitjean, G. Caboche, E. Siebert, L. Dessemond and L. -C. Dufour: J. Eur. Ceram. Soc. Vol 25 (2005), p.2651.

[4] A. Kucernak and J. Jiang: Chem. Eng. J. Vol. 93 (2003), p.81.

[5] P.S.D. Brito and C.A.C. Sequeira: J. Power Sources Vol. 52 (1994), p.1.

[6] B. Wang: J. Power Sources Vol. 152 (2005), p.1.

[7] S.B. Adler: Sol. State Ionics Vol. 111 (1998), p.125.

[8] H.A. Gasteiger, S.S. Kocha, B. Sompalli and F.T. Wagner: Appl. Catal. B Vol. 56 (2005), p.9.

[9] M. Lefèvre, J.P. Dodelet and P. Bertrand: J. Phys. Chem. B Vol. 106 (2002), p.8705.

[10] A.C.C. Tseung and H.L. Bevan: J. Electroanal. Chem. Vol. 45 (1973), p.429.

[11] L. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba and T. Ohsaka: Electrochim. Acta Vol. 48 (2003), p.1015.

[12] P.S.D. Brito, R.M.M. Antunes and C.A.C. Sequeira: Técnica Vol. 3/95 (1995), p.43.

[13] Y. Matsumoto and E. Sato: Electrochim. Acta Vol. 25 (1980), p.585.

[14] S. Lj. Gojkovic, S.K. Zecevic and R.F. Savinell: J. Electrochem. Soc. Vol. 145 (1998), p.3713.

[15] A. Damjanovic, M.A. Genshaw and J. O'M. Bockris: J. Chem. Phys. Vol. 45 (1966), p.4057.

[16] K.L.M. Yeung and A.C.C. Tseung: J. Electrochem. Soc. Vol. 125 (1978), p.878.

[17] M. Hayashi, T. Hyodo, N. Miura and N. Yamazoe: Electrochemistry Vol. 68 (2000), p.112.

[18] I. Arul Raj: Sol. State Ionics Vol. 68 (1994), p.5.

[19] G.Q. Zhong, H. Xiong and Y.Q. Jia: Mat. Chem. Phys. Vol. 91 (2005), p.10.

[20] X.J. Chen, K.A. Khor and S.H. Chan: Sol. State Ionics Vol. 167 (2004), p.379.

[21] E.B. Yeager: Proc. Electrochem. Soc. Symp. Vol. 77-6 (1977), p.149.

[22] H.L. Bevan and A.C.C. Tseung: Electrochim. Acta Vol. 19 (1974), p.201.

Fetching data from Crossref.
This may take some time to load.