Electrocatalytic Studies of Oxygen Reduction by Lanthanum Barium Manganate


Article Preview

The electrocatalysis of the oxygen reduction reaction by Lanthanum Barium Manganate, (La0.5Ba0.5MnO3) (LBM) has been studied by cyclic voltammetry using the rotating ring-disc electrode technique (RRDE) in alkaline medium. From the ring-disc data and other kinetic parameters it has been assumed that the oxygen reduction occurs by dissociative chemisorption at low overpotentials. At higher overpotentials, the formation of hydrogen peroxide (HO2 - in this case) has been observed on this electrocatalyst. The apparent exchange current density value for oxygen reduction on LBM has been found to be 4 x 10-8 Acm-2, while the corresponding Tafel slope is 0.115 V per decade. The possible reaction mechanism for electroreduction of oxygen on this oxide catalyst has been discussed.



Defect and Diffusion Forum (Volumes 258-260)

Edited by:

Prof. Andreas Öchsner and José Grácio




D. M.F. Santos and C. A.C. Sequeira, "Electrocatalytic Studies of Oxygen Reduction by Lanthanum Barium Manganate", Defect and Diffusion Forum, Vols. 258-260, pp. 327-332, 2006

Online since:

October 2006




[1] S.P. Jiang: Sol. State Ionics Vol. 146 (2002), p.1.

[2] R. Pelosato, I.N. Sora, G. Dotelli, R. Ruffo and C.M. Mari: J. Eur. Ceram. Soc. Vol. 25 (2005), p.2587.

[3] M. Petitjean, G. Caboche, E. Siebert, L. Dessemond and L. -C. Dufour: J. Eur. Ceram. Soc. Vol 25 (2005), p.2651.

[4] A. Kucernak and J. Jiang: Chem. Eng. J. Vol. 93 (2003), p.81.

[5] P.S.D. Brito and C.A.C. Sequeira: J. Power Sources Vol. 52 (1994), p.1.

[6] B. Wang: J. Power Sources Vol. 152 (2005), p.1.

[7] S.B. Adler: Sol. State Ionics Vol. 111 (1998), p.125.

[8] H.A. Gasteiger, S.S. Kocha, B. Sompalli and F.T. Wagner: Appl. Catal. B Vol. 56 (2005), p.9.

[9] M. Lefèvre, J.P. Dodelet and P. Bertrand: J. Phys. Chem. B Vol. 106 (2002), p.8705.

[10] A.C.C. Tseung and H.L. Bevan: J. Electroanal. Chem. Vol. 45 (1973), p.429.

[11] L. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba and T. Ohsaka: Electrochim. Acta Vol. 48 (2003), p.1015.

[12] P.S.D. Brito, R.M.M. Antunes and C.A.C. Sequeira: Técnica Vol. 3/95 (1995), p.43.

[13] Y. Matsumoto and E. Sato: Electrochim. Acta Vol. 25 (1980), p.585.

[14] S. Lj. Gojkovic, S.K. Zecevic and R.F. Savinell: J. Electrochem. Soc. Vol. 145 (1998), p.3713.

[15] A. Damjanovic, M.A. Genshaw and J. O'M. Bockris: J. Chem. Phys. Vol. 45 (1966), p.4057.

[16] K.L.M. Yeung and A.C.C. Tseung: J. Electrochem. Soc. Vol. 125 (1978), p.878.

[17] M. Hayashi, T. Hyodo, N. Miura and N. Yamazoe: Electrochemistry Vol. 68 (2000), p.112.

[18] I. Arul Raj: Sol. State Ionics Vol. 68 (1994), p.5.

[19] G.Q. Zhong, H. Xiong and Y.Q. Jia: Mat. Chem. Phys. Vol. 91 (2005), p.10.

[20] X.J. Chen, K.A. Khor and S.H. Chan: Sol. State Ionics Vol. 167 (2004), p.379.

[21] E.B. Yeager: Proc. Electrochem. Soc. Symp. Vol. 77-6 (1977), p.149.

[22] H.L. Bevan and A.C.C. Tseung: Electrochim. Acta Vol. 19 (1974), p.201.

Fetching data from Crossref.
This may take some time to load.