Chronopotentiometric Study of the Electrooxidation of Borohydride Anion in Alkaline Medium


Article Preview

Borohydrides present interesting options for electrochemical power generation acting either as hydrogen sources or anodic fuels for direct borohydride fuel cells and batteries. Though there have been several papers concerning electrochemical determination of relevant thermodynamic and kinetic parameters to the borohydride system, a number of its basic aspects have not been yet systematically studied. In this paper we report chronopotentiometric studies of the electrooxidation of sodium borohydride at a gold sphere electrode in 2M NaOH solutions, at temperatures ranging from 25 to 55 °C. Gold displayed a rather good BH4 - oxidation activity, and the overall oxidation process was shown to be irreversible involving a number of electrons very close to the theoretically expected value of 8. The results suggested that the rate-determining step is an irreversible, diffusion controlled, one-electron oxidation step, for which the transfer coefficients were calculated.



Defect and Diffusion Forum (Volumes 258-260)

Edited by:

Prof. Andreas Öchsner and José Grácio




D. M.F. Santos and C. A.C. Sequeira, "Chronopotentiometric Study of the Electrooxidation of Borohydride Anion in Alkaline Medium", Defect and Diffusion Forum, Vols. 258-260, pp. 333-339, 2006

Online since:

October 2006




[1] J. Larminie and A. Dicks (eds): Fuel Cell Systems Explained, 2 nd ed. (John Wiley, New York 2003).

[2] I. Ono, O. Wakabayashi and S. Haruyama: J. Electrochem. Soc. Vol. 132 (1985), p.2323.

[3] B.H. Liu, Z.P. Li and S. Suda: J. Electrochem. Soc. Vol. 150 (2003), p.398.

[4] B.H. Liu, Z.P. Li and S. Suda: Electrochim. Acta Vol. 49 (2004), p.3097.

[5] K. Wang, J. Lu and L. Zhuang: J. Electroanal. Chem. Vol. 585 (2005), p.191.

[6] H. Cheng and K. Scott: Electrochim. Acta Vol. 51 (2006), p.3429.

[7] G. Denuault, M.V. Mirkin and A.J. Bard: J. Electroanal. Chem. Vol. 308 (1991), p.27.

[8] R.L. Pecsok: J. Am. Chem. Soc. Vol. 75 (1953).

[9] W.H. Stockmayer, D.W. Rice and C.C. Stephenson: J. Am. Chem. Soc. Vol. 77 (1955), p. (1980).

[10] S.C. Amendola, P. Onnerud, M.T. Kelly, P.J. Petillo, S.L. Sharp-Goldman and M. Binder: J. Power Sources Vol. 126 (2004), p.28.

[11] Z.P. Li, B.H. Liu, K. Arai and S. Suda: J. Electrochem. Soc. Vol. 150 (2003), p. A868.

[12] M.H. Atwan, C.L.B. Macdonald, D.O. Northwood and E.L. Gyenge: J. Power Sources Vol. 158 (2006), p.36.

[13] M. Chatenet, F. Micoud, I. Roche, E. Chainet and J. Vondrák: Electrochim. Acta Vol. 51 (2006), p.5452.

[14] E.L. Gyenge, M.H. Atwan, D.O. Northwood: J. Electrochem. Soc. Vol. 153 (2006), p. A150.

[15] E.L. Gyenge: Electrochim. Acta Vol. 49 (2004), p.965.

[16] M. Chatenet, F. Micoud, I. Roche and E. Chainet: Electrochim. Acta Vol. 51 (2006), p.5459.

[17] H.J.S. Sand: Philos. Mag. Vol. 1 (1901), p.45.

[18] W.H. Reinmuth: Anal. Chem. Vol. 32 (1960), p.1514.

[19] A.J. Bard and L.R. Faulkner: Electrochemical Methods, 2 nd ed. (John Wiley, New York 2001).

Fetching data from Crossref.
This may take some time to load.