Diffusion of Zinc in Two-Phase Mg-Al Alloy


Article Preview

Coefficient of 65Zn heterodiffusion in Mg17Al12 intermetallic and in eutectic alloy Mg - 33.4 wt. % Al was measured in the temperature region 598 – 698 K using serial sectioning and residual activity methods. Diffusion coefficient of 65Zn in the intermetallic can be written as DI = 1.7 × 10-2 m2 s-1 exp (-155.0 kJ mol-1 / RT). At temperatures T ≥ 648 K, where the mean diffusion path was greater than the mean interlamellar distance in the eutectic, the effective diffusion coefficient Def = 2.7 × 10-2 m2 s-1 exp (-155.1 kJ mol-1 / RT) was evaluated. At two lower temperatures, the diffusion coefficients 65Zn in interphase boundaries were estimated: Db (623 K) = 1.6 × 10-12 m2 s-1 and Db (598 K) = 4.4 × 10-13 m2 s-1.



Edited by:

J. Čermák and I. Stloukal




I. Stloukal and J. Čermák, "Diffusion of Zinc in Two-Phase Mg-Al Alloy", Defect and Diffusion Forum, Vol. 263, pp. 189-194, 2007

Online since:

March 2007




[1] M. Avedesian, and H. Baker: Magnesium And Magnesium Alloys (ASM Materials Park, OH 1999).

[2] S.P. Kumar, S. Kumaran and T.S. Rao: Mat. Sci. Technol. Vol. 20 (2004), p.835.

[3] G. Sharma, R. V. Ramanujan and G.P. Tiwari: Acta Mater. Vol. 48 (2000), p.875.

[4] A.F. Crawley and K.S. Milliken: Acta Metall. Vol. 22 (1974), p.557.

[5] S. Guldberg and N. Ryum: Mat. Sci. Eng. A Vol. 589 (2000), p.143.

[6] S. Celotto: Acta Mater. Vol. 48 (2000), p.1775.

[7] J. Buršík and M. Svoboda: Microchim. Acta Vol. 139 (2002), p.39.

[8] M. -X. Zhang and P.M. Kelly: Scripta Mater. Vol. 48 (2003), p.647.

[9] J. Čermák and I. Stloukal: Phys. Stat. Sol. (a) Vol. 203 (2006), p.2386.

[10] J. Crank: The Mathematics Of Diffusion (Clarendon Press, Oxford 1957).

[11] S.V. Divinski, F. Hisker, Y. -S. Kang, J. -S. Lee and Chr. Herzig: Interface Sci. Vol. 11 (2003), p.67.

DOI: https://doi.org/10.1023/a:1021587007368

[12] I. Kaur and W. Gust: Fundamentals of Grain and Interphase Boundary Diffusion (Ziegler Press, Stuttgart 1988).

[13] Z. Hashin and S. Shtrikman: J. Appl. Phys. Vol. 33 (1962), p.3125.

[14] R.W. Cahn and P. Haasen: Physical Metallurgy (North-Holland Physics Publishing, Amsterdam - Oxford - New York - Tokyo 1983). Fig. 12 Grain boundary wetting in alloy E. (693 K/132 h, OP-S suspension).