The Simulation of Heat and Vapour Transfer Trough Fibrous Materials


Article Preview

The heat and water vapour transmitting properties of fibrous materials are important factors that affect the clothing's comfort as well as the quality of special functional clothing that is worn in extreme environmental conditions. The paper introduces advanced system for the simulation of physiological processes that appear next to the human skin. Its use enables the measurement of heat and vapour transfer trough fibrous structures, as well as determination of vapour permeability and permeability index. The experiments reported here refer to the measurement of a number of fibrous materials used for the next-to-skin wear. For the measurement have been produced materials that differ either in their structure or raw material in order to observe the influences of different parameters to the transfer properties. The transfer trough fibrous materials is mainly affected by its structure that comprises of a repeat units with cellular geometry containing air pores, yarns that form basic structure and intersection points of two or more yarns. Therefore, the structure of materials is also investigated and described by means of fabric moduli. Dynamics of heat and vapour transfer is observed through the experimentally obtained data and the influence of a number of structural parameters is discussed. The statistical methods are used to qualify the effects of investigated variables on the heat and vapour resistance.



Defect and Diffusion Forum (Volumes 297-301)

Edited by:

Andreas Öchsner, Graeme E. Murch, Ali Shokuhfar and João M.P.Q. Delgado






I. Salopek Čubrić and Z. Skenderi, "The Simulation of Heat and Vapour Transfer Trough Fibrous Materials", Defect and Diffusion Forum, Vols. 297-301, pp. 1205-1209, 2010

Online since:

April 2010




In order to see related information, you need to Login.

In order to see related information, you need to Login.