Computer Simulation Model for First-Order Phase Transition Fluctuation Stage


Article Preview

Ion irradiation of surfaces leads to blistering (vacancy-gaseous bubbles formation into crystal lattice) and/or nano-scale islands of thin cover formation. Stochastic model of first order phase transition at fluctuation stage is presented by superposition of Wiener processes of nuclei clustering and it’s Brownian motion. Solution of Ito-Stratonovich stochastic differential equations allows studying the evolution of distribution functions versus clusters sizes and relative lattice locations of nuclei.



Defect and Diffusion Forum (Volumes 297-301)

Edited by:

Prof. Andreas Öchsner, Prof. Graeme E. Murch, Ali Shokuhfar and Prof. João M.P.Q. Delgado






A. Bondareva et al., "Computer Simulation Model for First-Order Phase Transition Fluctuation Stage ", Defect and Diffusion Forum, Vols. 297-301, pp. 502-507, 2010

Online since:

April 2010




[1] Yu.S. Sigov: Computer Simulation: The link between past and future of plasma physics. Selected works. Composed by V.D. Levchenko and G.I. Zmievskaya (FIZMATLIT, Physics and Mathematics Publisher, IAPC Nauka, Moscow 2001) (in Russian).

[2] Yu.S. Sigov, V.D. Levchenko, in Dynamics of Transport in Plasmas and Charged Beams, ed. by G. Maino and M. Ottaviani (World Sci. Publ. Co. Pte. Ltd., Singapore-London 1996), p.55.

[3] G.I. Zmievskaya, ibid., p.84.

[4] G.I. Zmievskaya: Plasma Phys. Report Vol. 23(4) (1997), p.340.

[5] A.L. Bondareva, G.I. Zmievskaya, V.D. Levchenko: Europ. Phys. Journal D (Atom., Molec. and Opt. Phys. ) Vol. 38 (1) (2006), p.143.

[6] A.L. Bondareva, G.I. Zmievskaya, A.V. Ivanov, in Rarefied Gas Dynamics, edited by M.S. Ivanov and A.K. Rebrov, (Publishing House of the Siberian Branch of the RAS, Novosibirsk 2007), p.715.

[7] G.I. Zmievskaya, A.L. Bondareva, V.D. Levchenko, T.V. Levchenko: Journal of Phys. D: Appl. Phys. Vol. 40 (2007), p.4842.

[8] V.D. Levchenko, L.V. In'kov, G.I. Zmievskaya: in 30th EPS Conference on Contr. Fusion and Plasma Physics Contributions, edited by R. Koch, S. Lebedev. (Published by EPS Series, Paris 2003), p. 27A, O-1. 6B.

[9] G.I. Zmievskaya, L.V. In'kov, V.D. Levchenko, T.V. Levchenko: Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques, Numb. 5 (2004), p.106.

[10] A.V. Skorohod: Stochastic equations for complex systems (D. Reidel Publ. Comp., Dodrecht 1988).

[11] L. Arnold: Random Dynamical Systems (Springer Monographs in Math., Springer 1998).

[12] Yu.L. Klimontovich: Uspekhi-Physics (Adv. in Phys. Sci. ) Vol. 164(8 ) (1994), p.811.

[13] A.I. Morosov, A.S. Sigov: Solid State Communications Vol. 67 (1988), p.841.

[14] S.S. Artem'ev, T.A. Averina: Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations (Utrecht, The Netherlands 1997).

[15] I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids Vol. 19 (1961), p.35.

[16] U. Kortshagen: J. Phys. D: Appl. Phys. 42 (2009), p.113001.

[17] J.P. Allain, A. Hassanein et al/ Nucl. Inst. and Methods in Physics Res. B 242 (2006) p.520.

In order to see related information, you need to Login.