Improvement of the Electrochemical Properties in Nano-Sized Al2O3 and AlF3-Coated LiFePO4 Cathode Materials


Article Preview

The surface conditions of LiFePO4 powder were modified by adding AlF3 and Al2O3 by using the sol-gel process to improve its electrochemical properties. The surface of LiFePO4 powders was partially covered with nano-sized AlF3 and Al2O3, which is confirmed by using a transmission electron microscope image. The states of coated Al materials were examined by using X-ray photoelectron spectrometer results. The nano-sized AlF3- and Al2O3-coated LiFePO4 powders showed no difference in the bulk structure compared with the pristine one. However, the AlF3- and Al2O3-coating on LiFePO4 powders improved the overall electrochemical properties such as the discharge capacity, the cyclability, and the rate capability compared with those of a pure LiFePO4. Such enhancements were attributed to the presence of a stable AlF3 and Al2O3 layer which acts as an interfacial stabilizer on the surface of LiFePO4 powders.



Defect and Diffusion Forum (Volumes 297-301)

Edited by:

Andreas Öchsner, Graeme E. Murch, Ali Shokuhfar and João M.P.Q. Delgado






C.W. Ahn et al., "Improvement of the Electrochemical Properties in Nano-Sized Al2O3 and AlF3-Coated LiFePO4 Cathode Materials", Defect and Diffusion Forum, Vols. 297-301, pp. 906-911, 2010

Online since:

April 2010




[1] K. Mizushima, P.C. Jones, P.J. Wiseman and J.B. Goodenough: Mater. Res. Bull. Vol. 15 (1980), p.783.

[2] J.N. Reimers and J.R. Dahn: J. Electrochem. Soc. Vol. 139 (1992), p. (2091).

[3] A.S. Andersson and J.O. Thomas: J. Power Sources Vol. 97 (2001), p.498.

[4] S. Yang, P.Y. Zavalij and M.S. Whittingham: Electrochem. Comm. Vol. 3 (2001), p.505.

[5] E.D. Jeong, H.J. Kim, C.W. Ahn, M.G. Ha, T.E. Hong, H.G. Kim, J.S. Jin, J.S. Bae, K.S. Hong, Y.S. Kim, H. Kim, C.H. Doh and H.S. Yang: J. Nanosci. Nanotechnol. Vol. 9 (2009), p.4467.

DOI: 10.1166/jnn.2009.m78

[6] K.S. Hong, S.M. Yu, M.G. Ha, C.W. Ahn, T.E. Hong, J.S. Jin, H.G. Kim, E.D. Jeong, Y.S. Kim, H.J. Kim, C.H. Doh and H.S. Yang: Bull. Korean Chem. Soc (in press).

[7] C.W. Ahn, M.G. Ha, K.S. Hong, J.S. Bae, Y.S. Kim, C.H. Doh, I.W. Kim, H.S. Yang and E.D. Jeong: submitted to Bull. Korean Chem. Soc. (2009).

[8] Y.J. Kim, J. Cho, T. -J. Kim and B. Park: J. Electrochem. Soc. Vol. 150 (2003), p. A1723.

[9] J. Cho, H. Kim and B. Park: J. Electrochem. Soc. Vol. 151 (2004), p. A1707.

[10] S.T. Myung, K. Izumi, S. Komaba, Y.K. Sun, H. Yashiro and N. Kumagai: Chem. Mater. Vol. 17 (2005), p.3695.

[11] H. Miyashiro, A. Yamanaka, M. Tabuchi, S. Seki, M. Nakayama, Y. Ohno, Y. Kobayashi, Y. Mita, A. Usami and M. Wakihara: J. Electrochem. Soc. Vol. 153 (2006), p. A348.

DOI: 10.1149/1.2149306

[12] H. H. Chang, C.C. Chang, C.Y. Su, H.C. Wu, M.H. Yang and N.L. Wu: J. Power Sources Vol. 185 (2008), p.466.

[13] Y. Kim, H.S. Kim and S.W. Martin: Electrochim. Acta Vol. 52 (2006), p.1316.

[14] Y. K Sun, J.M. Han, S.T. Myung, S.W. Lee and K. Amine: Electrochem. Comm. Vol. 8 (2006), p.821.

[15] Y. K Sun, S.W. Cho, S.T. Myung, K. Amine et al.: Electrochim. Acta Vol. 53 (2007), p.1013.

[16] B.C. Park, H.B. Kim, S.T. Myung, K. Amine et al.: J. Power Sources Vol. 178 (2008), p.826.

[17] H.B. Kim, B.C. Park, S.T. Myung, K. Amine et al.: J. Power Sources Vol. 179 (2008), p.347.

[18] J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben: Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain and R.C. King, Jr., Physical Electronics Inc., USA (1995).

[19] G.G. Amatucci, J.M. Tarascon and L.C. Klein: Solid State Ionics Vol. 83 (1996), p.167.

[20] D. Aurbach, B. Markovsky, A. Rodkin, E. Levi et al.: Electrochim. Acta Vol. 47 (2002), p.4291.

In order to see related information, you need to Login.