The Effect of Al2O3 and Li2O on the Anatase to Rutile Phase Transformation


Article Preview

The utilization of Al2O3 and Li2O as dopants that promote the anatase-to-rutile (A-R) phase transition in TiO2 nanoparticles during calcinations is studied. X-Ray Diffraction and SEM techniques were employed for the evaluation of phase transformation and particle size coarsening in pure TiO2, TiO2-Al2O3 and TiO2-Li2O mixtures. For the Li-Ti-O pseudobinary systems some complex oxides may be formed during phase transformation that occurs at significantly lower temperatures compared to pure TiO2 or TiO2-Al2O3 mixtures. Al2O3 doping in TiO2 only increases the anatase-to-rutile transition rate once the phase transformation has been initiated.



Defect and Diffusion Forum (Volumes 297-301)

Edited by:

Prof. Andreas Öchsner, Prof. Graeme E. Murch, Ali Shokuhfar and Prof. João M.P.Q. Delgado




M.D. Athanassopoulou et al., "The Effect of Al2O3 and Li2O on the Anatase to Rutile Phase Transformation", Defect and Diffusion Forum, Vols. 297-301, pp. 918-923, 2010

Online since:

April 2010




[1] J.F. Banfield, D.R. Veblen and D.J. Smith: Am. Mineral Vol. 76 (1991), p.343.

[2] R. Marchand, L. Brohan and M. Tournoux: Mater. Res. Bul. Vol. 15 (1980), p.1129.

[3] M. Latroche, L. Brohan, R. Marchand and M. Tournoux: J. Sol. State Ch. Vol. 81 (1989), p.78.

[4] J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai, K. Aoki and H. Takei: Solid State Chem. Vol. 113 (1994), p.27.

[5] W. Swamy, J.D. Gale and LS. Dubrovinsky: J. Phys. Chem. Solids Vol. 62 (2001), p.887.

[6] C.T. Dervos, E. Thirios, J. Novacovich, P. Vassiliou and P. Skafidas: Mater. Lett. Vol. 58 (2004), p.1502.

[7] G. Madras, B.J. Mc Coy and A. Navrotsky: J. Am. Ceram. Soc. Vol. 90 (2007), p.250.

[8] H. Zhang and J.F. Banfield: J. Mater. Chem. Vol. 8 (1998), p. (2073).

[9] J. Huberty and H. Xu: J. Solid State Chem. Vol. 181 (2008), p.508.

[10] H. Zhang and J.F. Banfield: J. Mater. Res. Vol. 15 (2000), p.437.

[11] H. Zhang and J.F. Banfield: J. Phys. Chem. C Vol. 111 (2007), p.6621.

[12] S.R. Yoganarasimhan and C.N.R. Rao: Trans. Faraday Soc. Vol. 58 (1962), p.1579.

[13] K.J.D. MacKenzie: Trans. J. Br. Ceram. Soc. Vol. 74 (1975), p.29.

[14] C. Byun, J.W. Jang, I.T. Kim, K.S. Hong and B.W. Lee: Mater. Res. Bull. Vol. 32 (1997), p.431.

[15] Y. Li, T.J. White and S.H. Lim: J. Solid State Chem. Vol. 177 (2004), p.1372.

[16] Y. Hu, H.L. Tsai and C.L. Huang: J. Eur. Ceram. Soc. Vol. 23 (2003), p.691.

[17] K.N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo and H. Nagamoto: J. Mater. Chem. Vol. 3 (1993), p.1151.

[18] Y.U. Ahn, E.J. Kim, H.T. Kim and S.H. Hahn: Mater. Lett. Vol. 57 (2003), p.4660.

[19] C.K. Shin, Y.K. Peak and H.J. Lee: Int. J. Appl. Ceram. Tech. Vol. 3 (2006), p.463.

[20] A. Templeton, X. Wang, S.J. Penn, S.J. Webb, L.F. Cohen and N.M. Alford: J. Am. Ceram. Soc. Vol. 83 (2000), p.95.

[21] R.A. Spurr and H. Myers: Anal. Chem. Vol. 29 (1957), p.760.

[22] B. Grzmil, M. Rabe, B. Kic and K. Lubkowski: Ind. Eng. Chem. Res. Vol. 46 (2007), p.1018.

[23] CRC Handbook of phys. and chem., edited by D.R. Lide, 76th Edn. N.Y., CRC Press (1995).

[24] G. Izquierdo and A.R. West: Mater. Res. Bul. Vol. 15 (1980), p.1655.

[25] J.C. Mikkelsen: J. Cryst. Growth Vol. 47 (1979), p.659.

[26] H. Kleykamp: Fusion Eng. Des. Vol. 61-62 (2002), p.361.

[27] N. Togashi, T. Okumura and K. Ohishi: J. Ceram. Soc. Jap. Vol. 115 (2007), p.324.

[28] A. Deschanvres, B. Raveau and Z. Sekkal: Mater. Res. Bull. Vol. 6 (1971), p.699.

[29] G.H. Jonker: Trabajos de la Tercera Reunion International Sobre Reactividad de la Solidas. Madrid, Spain; 1957, p.413.

[30] J. Musil, V. Šatava, R. Čerstvý, P. Zeman and T. Tölg: Surf. Coat. Tech. Vol. 202 (2008), p.6064.