The Effect of Al2O3 and Li2O on the Anatase to Rutile Phase Transformation

Abstract:

Article Preview

The utilization of Al2O3 and Li2O as dopants that promote the anatase-to-rutile (A-R) phase transition in TiO2 nanoparticles during calcinations is studied. X-Ray Diffraction and SEM techniques were employed for the evaluation of phase transformation and particle size coarsening in pure TiO2, TiO2-Al2O3 and TiO2-Li2O mixtures. For the Li-Ti-O pseudobinary systems some complex oxides may be formed during phase transformation that occurs at significantly lower temperatures compared to pure TiO2 or TiO2-Al2O3 mixtures. Al2O3 doping in TiO2 only increases the anatase-to-rutile transition rate once the phase transformation has been initiated.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Edited by:

Prof. Andreas Öchsner, Prof. Graeme E. Murch, Ali Shokuhfar and Prof. João M.P.Q. Delgado

Pages:

918-923

Citation:

M.D. Athanassopoulou et al., "The Effect of Al2O3 and Li2O on the Anatase to Rutile Phase Transformation", Defect and Diffusion Forum, Vols. 297-301, pp. 918-923, 2010

Online since:

April 2010

Export:

Price:

$41.00

[1] J.F. Banfield, D.R. Veblen and D.J. Smith: Am. Mineral Vol. 76 (1991), p.343.

[2] R. Marchand, L. Brohan and M. Tournoux: Mater. Res. Bul. Vol. 15 (1980), p.1129.

[3] M. Latroche, L. Brohan, R. Marchand and M. Tournoux: J. Sol. State Ch. Vol. 81 (1989), p.78.

[4] J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai, K. Aoki and H. Takei: Solid State Chem. Vol. 113 (1994), p.27.

[5] W. Swamy, J.D. Gale and LS. Dubrovinsky: J. Phys. Chem. Solids Vol. 62 (2001), p.887.

[6] C.T. Dervos, E. Thirios, J. Novacovich, P. Vassiliou and P. Skafidas: Mater. Lett. Vol. 58 (2004), p.1502.

[7] G. Madras, B.J. Mc Coy and A. Navrotsky: J. Am. Ceram. Soc. Vol. 90 (2007), p.250.

[8] H. Zhang and J.F. Banfield: J. Mater. Chem. Vol. 8 (1998), p. (2073).

[9] J. Huberty and H. Xu: J. Solid State Chem. Vol. 181 (2008), p.508.

[10] H. Zhang and J.F. Banfield: J. Mater. Res. Vol. 15 (2000), p.437.

[11] H. Zhang and J.F. Banfield: J. Phys. Chem. C Vol. 111 (2007), p.6621.

[12] S.R. Yoganarasimhan and C.N.R. Rao: Trans. Faraday Soc. Vol. 58 (1962), p.1579.

[13] K.J.D. MacKenzie: Trans. J. Br. Ceram. Soc. Vol. 74 (1975), p.29.

[14] C. Byun, J.W. Jang, I.T. Kim, K.S. Hong and B.W. Lee: Mater. Res. Bull. Vol. 32 (1997), p.431.

[15] Y. Li, T.J. White and S.H. Lim: J. Solid State Chem. Vol. 177 (2004), p.1372.

[16] Y. Hu, H.L. Tsai and C.L. Huang: J. Eur. Ceram. Soc. Vol. 23 (2003), p.691.

[17] K.N.P. Kumar, K. Keizer, A.J. Burggraaf, T. Okubo and H. Nagamoto: J. Mater. Chem. Vol. 3 (1993), p.1151.

[18] Y.U. Ahn, E.J. Kim, H.T. Kim and S.H. Hahn: Mater. Lett. Vol. 57 (2003), p.4660.

[19] C.K. Shin, Y.K. Peak and H.J. Lee: Int. J. Appl. Ceram. Tech. Vol. 3 (2006), p.463.

[20] A. Templeton, X. Wang, S.J. Penn, S.J. Webb, L.F. Cohen and N.M. Alford: J. Am. Ceram. Soc. Vol. 83 (2000), p.95.

[21] R.A. Spurr and H. Myers: Anal. Chem. Vol. 29 (1957), p.760.

[22] B. Grzmil, M. Rabe, B. Kic and K. Lubkowski: Ind. Eng. Chem. Res. Vol. 46 (2007), p.1018.

[23] CRC Handbook of phys. and chem., edited by D.R. Lide, 76th Edn. N.Y., CRC Press (1995).

[24] G. Izquierdo and A.R. West: Mater. Res. Bul. Vol. 15 (1980), p.1655.

[25] J.C. Mikkelsen: J. Cryst. Growth Vol. 47 (1979), p.659.

[26] H. Kleykamp: Fusion Eng. Des. Vol. 61-62 (2002), p.361.

[27] N. Togashi, T. Okumura and K. Ohishi: J. Ceram. Soc. Jap. Vol. 115 (2007), p.324.

[28] A. Deschanvres, B. Raveau and Z. Sekkal: Mater. Res. Bull. Vol. 6 (1971), p.699.

[29] G.H. Jonker: Trabajos de la Tercera Reunion International Sobre Reactividad de la Solidas. Madrid, Spain; 1957, p.413.

[30] J. Musil, V. Šatava, R. Čerstvý, P. Zeman and T. Tölg: Surf. Coat. Tech. Vol. 202 (2008), p.6064.