Thermal Conductivity of Carbon Nanofibre-Polypropylene Composite Foams

Abstract:

Article Preview

Carbon nanofibre-reinforced polypropylene nanocomposites containing from 5 to 20 wt.% of carbon nanofibres and a chemical blowing agent were melt-compounded and later foamed using compression-moulding. Alongside their foaming behaviour analysis and cellular characterization, foams showing an increasingly finer isometric cellular structure with increasing the amount of nanofibres, their thermal conductivity was determined using the Transient Plane Source Method (TPS). Contrarily to the electrical conductivity, which has previously been shown to rise with increasing the amount of carbon nanofibres [1], the addition of the nanofibres did not significantly alter the thermal conductivity of the PP foams, their value being mainly affected by the relative density, only slight differences being assessed for the higher expansion ratio PP-CNF foams.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Edited by:

Prof. Andreas Öchsner, Prof. Graeme E. Murch, Ali Shokuhfar and Prof. João M.P.Q. Delgado

Pages:

996-1001

Citation:

M. Antunes et al., "Thermal Conductivity of Carbon Nanofibre-Polypropylene Composite Foams", Defect and Diffusion Forum, Vols. 297-301, pp. 996-1001, 2010

Online since:

April 2010

Export:

Price:

$38.00

[1] M. Antunes, J.I. Velasco, V. Realinho and D. Arencón: Characterization of carbon nanofibrereinforced polypropylene foams, J. Nanosci. Nanotechnol. (in press, DOI: 10. 1166/jnn. 2010. 1831).

DOI: https://doi.org/10.1166/jnn.2010.1831

[2] M. Shaffer and J. Sandler: in Processing and Properties of �anocomposites, S. Advani, Ed., World Scientific (2006), p.1.

[3] M.H. Al-Saleh and U. Sundararaj: Carbon Vol. 47 (2009), p.2.

[4] Y. -P. Sun, K. Fu, Y. Lin and W. Huang: Acc. Chem. Res. Vol. 35 (2002), p.1096.

[5] A. Koshio, M. Yudasaka, M. Zhang and S. Iijima: Nano Lett. Vol. 1 (2001), p.361.

[6] M. Antunes, J. I. Velasco, V. Realinho and E. Solórzano: Polym. Eng. Sci. (2009), p.1.

[7] M. Antunes, J. I. Velasco, V. Realinho, A. B. Martínez, M. A. Rodríguez-Pérez and J. A. de Saja: Adv. Eng. Mater. Vol. 21 (2009), p.1.

[8] Y. Yang, M. C. Gupta, K. L. Dudley and R. W. Lawrence: Adv. Mater. Vol. 17 (2005), p. (1999).

[9] J. Shen, X. Han and L. J. Lee: J. Cell. Plas. Vol. 42 (2006), p.105.

[10] J. I. Velasco, M. Antunes, O. Ayyad, J. M. López-Cuesta, P. Gaudon, C. Saiz-Arroyo, M. A. Rodríguez-Pérez and J. A. de Saja: Polymer Vol. 48 (2007), p. (2098).

DOI: https://doi.org/10.1016/j.polymer.2007.02.008

[11] S.E. Gustafsson: Rev. Sci. Inst. Vol. 62 (1991), p.797.

[12] M. Gustavsson, E. Karawacki, S.E. Gustafsson: Rev. Sci. Inst. Vol. 65 (1994), p.3856.

[13] R.C. Weast: Handbook of Chemistry and Physics, 53rd ed, The Chemical Rubber Co. (1973).

[14] L.J. Gibson and M.F. Ashby: Cellular Solids, 2nd ed, Cambridge University Press, Cambridge (1997), p.285.

[15] P. Kim, L. Shi, A. Majumdar and P.L. McEuen: Phys. Rev. Lett. Vol. 87 (2001), p.215502.

Fetching data from Crossref.
This may take some time to load.