Grain Boundary Segregation and Amount of Bulk Carbides in Severely Deformed Fe–C Alloys


Article Preview

The microstructure, phase composition, Mössbauer spectra, grain boundary segregation and magnetic properties of binary Fe–C alloys with carbon concentration of 0.05, 0.10, 0.20, 0.25, 0.45, 0.60, 1.3, 1.5 and 1.7 wt. % were studied in the as-cast state, after a long annealing at 725°C and after high-pressure torsion (HPT) at the ambient temperature and 5 GPa with 5 anvil rotations (shear strain about 6). The grain size after HPT was in the nanometer range. Only Fe3C (cementite) and -Fe remain in the alloys after HPT. It was also shown that the less stable Hägg carbide (Fe5C2) and retained austenite disappear, and phase composition closely approaches the equilibrium corresponding to the HPT temperature and pressure. Measurements of saturation magnetization and Mössbauer effect reveal that the amount of cementite decreases after HPT. The reason for partial cementite dissolution is the formation of the carbon-rich segregation layers in the ferrite grain boundaries.



Defect and Diffusion Forum (Volumes 309-310)

Edited by:

B.S. Bokstein, A.O. Rodin and B.B. Straumal




B. Straumal et al., "Grain Boundary Segregation and Amount of Bulk Carbides in Severely Deformed Fe–C Alloys", Defect and Diffusion Forum, Vols. 309-310, pp. 51-62, 2011

Online since:

March 2011




[1] X. Amilis, J. Nogués, S. Suriñach, J. Muriños, M. Baró: Phys. Rev. B Vol. 63 (2001), p.052402.

[2] L. Del Bianco, A. Hernando: Phys. Rev. B Vol. 56 (1997), p.8894.

[3] B.B. Straumal, B. Baretzky, A. Mazilkin, F. Phillipp, O. Kogtenkova, M. Volkov, R. Valiev: Acta Mater. Vol. 52 (2004), p.4469.


[4] A. Mazilkin, B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S. Protasova, O. Kogtenkova, R. Valiev: Acta Mater. Vol. 54 (2006), p.3933.


[5] M. Li, R. Birringer, W. Johnson: Nanostruc. Mater. Vol. 3 (1993), p.407.

[6] H. Read, W. Reynolds, K. Hono, T. Tarui, Scripta Mater. 3 Vol. 7 (1997), p.1221.

[7] Yu. Ivanisenko, I. MacLaren, X. Sauvage, R. Valiev, H-J. Fecht: Acta Mater. Vol. 54 (2006), p.1659.

[8] V. Shabashov, L. Korshunov, A. Mukoseev, V. Sagaradze, A. Makarov, V. Pilyugin, S. Novikov, N. Vildanova: Mater. Sci. Eng. A Vol. 346 (2003), p.196.


[9] Yu. Ivanisenko, W. Lojkovski, R. Valiev, H-J. Fecht: Acta Mater. Vol. 51 (2003), p.5555.

[10] D.E. Thomas: J. Sci. Instr. Vol. 25 (1948), p.440.

[11] M. Hasebe, H. Ohtani, T. Nishizawa: Met. Trans A. Vol. 16 (1985), p.913.

[12] G. Williamson, R.E. Smallman: Acta Cryst. Vol. 6 (1953), p.361.

[13] B.B. Straumal, A.A. Mazilkin, S.G. Protasova, S.V. Dobatkin, A.O. Rodin, B. Baretzky, D. Goll, G. Schütz: Mater. Sci. Eng. A Vol. 503 (2009), p.18.

[14] S. G. Protasova, B. B. Straumal, S. V. Dobatkin, D. Goll, G. Schütz, B. Baretzky, A. A. Mazilkin, A. N. Nekrasov: J. Mater. Sci. Vol. 43 (2008), p.3775.


[15] T.B. Massalski et al. (eds): Binary alloy phase diagrams (ASM International, Materials Park, OH, 1993).

[16] S. Chikazumi: Physics of ferromagnetism (Clarendon Press, Oxford, 1997).

[17] American Institute of Physics Handbook (McGrawHill Book, New York-Toronto-London, 1963).

[18] V.S. Litvinov et al.: Mössbauer spectroscopy of Fe based alloys (Metallurgy, Moscow, 1978) In Russian.

[19] R.A. Arents, Yu.V. Maksimov, I.P. Suzdalev, V.K. Imshennik, Yu.F. Krupyanskiy: Fiz. Met. Metalloved. Vol. 36 (1973), p.277.

[20] Yu.V. Maksimov, I.P. Suzdalev, R.A. Arents, S.M. Loktev: Kinet. Katal. Vol. 15 (1974), p.1293.

[21] Y. Xu, M. Umemoto, K. Tsuchiya: Mater. Trans. Vol. 9 (2002), p.2205.

[22] S. Ohsaki, K. Hono, H. Hidaka, S. Takaki: Scripta Mater. Vol. 52 (2005), p.271.

[23] G.M. Wang, S.J. Campbell, A. Calka, W.F. Caczmarek: NanoStruc. Mater. Vol. 6 (1995), p.389.

[24] . S.J. Campbell, G.M. Wang, A. Calka, W.F. Caczmarek: Mater. Sci. Eng. A Vol. 226 (1997), p.75.

[25] E. Bauer-Grosse, G. Le Caer: Phil. Mag. Vol. 56 (1987), p.485.

[26] A.V. Korznikov, Yu.V. Ivanisenko, D.V. Laptionok, I.M. Safarov, V.P. Pilyugin, R.Z. Valiev: NanoStruc Mater. Vol. 4 (1994), p.159.


[27] Yu. Ivanisenko, I. MacLaren, R.Z. Valiev, H. -J. Fecht: Adv. Eng. Mater. Vol. 7 (2005), p.1011.

[28] Y. Tomota, T. Suzuki, A. Kanie, Y. Shiota, M. Uno, A. Moriai, N. Minakawa, Y. Morii: Acta Mater. Vol. 53 (2005), p.63.

[29] H.G. Read, W.T. Reynolds Jr., K. Hono, T. Tarui: Scripta Mater. Vol. 37 (1997), p.1221.

[30] K. Makii, H. Yaguchi, M. Kaiso, N. Ibaraki, Y. Myamoto, Y. Oki: Scripta Mater. Vol. 37 (1997), p.1753.

[31] X. Sauvage, Yu. Ivanisenko: J. Mater. Sci. Vol. 42 (2007), p.1615.

[32] J.E. Hilliard: Trans. AIME Vol. 227 (1963), p.429.

[33] T.P. Ershova, E.G. Ponyatovskii: Dokl. Chem. Proc. Acad. Sci. USSR Vol. 151 (1963), p.724.

[34] Yu.A. Kocherzhinski, O.G. Kulik: Sov. Powder Metall. Met. Cer. Vol. 35(7-8) (1996), p.470.

[35] A.R. Yavari, P.J. Desré, T. Benameur: Phys. Rev. Lett. Vol. 68 (1992), p.2235.

[36] S.M.M. Ramos, L. Amarai, M. Behar, G. Marest, A. Vasques, F.C. Zawislak: Radiat. Eff. Def. Sol. Vol. 110 (1989), p.355.

[37] L. -S. Chang, E. Rabkin, B.B. Straumal, B. Baretzky, W. Gust: Acta Mater. Vol. 47 (1999), p.4041.

[38] S.V. Divinski, M. Lohmann, Chr. Herzig, B. Straumal, B. Baretzky, W. Gust: Phys. Rev. B Vol. 71 (2005), p.104104.

[39] H. Wang, Y. -M. Chiang: J. Amer. Ceram. Soc. Vol. 81 (1998), p.89.

[40] Y. -M. Chiang, L.A. Silverman, R.H. French, R.M. Cannon: J. Amer. Ceram. Soc. Vol. 77 (1994), p.1143.

[41] R.G. Faulkner, R.B. Jones, Z. Lu, P.E.J. Flewitt: Phil. Mag. Vol. 85 (2005), p.2065. Section Grain Boundary Diffusion, Segregation and Stresses, C. Perrin and A. Portavoce.