Table of Contents

Preface

1. Review Articles

Perturbed Angular Correlation Spectroscopy – A Tool for the Study of Defects and Diffusion at the Atomic Scale	
M.O. Zacate and H. Jaeger	3
Impurities in Magnetic Materials Studied by PAC Spectroscopy A.W. Carbonari, J. Mestnik-Filho and R.N. Saxena	39
Impurity Centers in Oxides Investigated by γ-γ Perturbed Angular Correlation Spectroscopy and <i>Ab Initio</i> Calculations A.F. Pasquevich and M. Rentería	62
•	02
Can PAC Measurements be Used to Investigate Defects in Nano-Structures? M. Uhrmacher	105
2. Current Research Articles	
TiO ₂ Nanomaterials Studied by ⁴⁴ Ti(EC) ⁴⁴ Sc Time Differential Perturbed Angular Correlations: Volume and Surface Properties	125
T. Butz, S.B. Ryu, S. Jankuhn, S.K. Das and S. Ghoshal	137
Comparison of Jump Frequencies of ¹¹¹ In/Cd Tracer Atoms in Sn ₃ R and In ₃ R Phases Having the L1 ₂ Structure (R = Rare-Earth)	
M. Lockwood Harberts, B. Norman, R. Newhouse and G.S. Collins	159
Implanted Impurities in Wide Band Gap Semiconductors	
P. Keßler, K. Lorenz and R. Vianden	167