Augmentation of the Performance of Batch Electrocoagulation Unit by Using Gas Sparging


Article Preview

The aim of the present work is to investigate the effect of gas sparging in improving the performance of a batch electrocoagulation unit used for the treatment of wastewater generated from dyeing industry. Monopolar cylindrical aluminum electrodes were used. Many variables were investigated such as superficial gas velocity, current density, initial dye concentration, area ratio (cathode/anode), time of operation and the effect of adding chemical coagulant as Fe (SO4). The results show that the % dye removal has been increased by a factor ranging from 2.52 to 5.14 by increasing the gas flow rate from 0.4 to 0.8 liter/min, respectively, and that about 93.5% of the dye can be removed within 60 minutes. Also it was found that using gas sparging is more efficient than adding chemical coagulant as ferrous sulphate for the removal of dye from wastewater. The power consumption for the unit was measured for different gas flow rates and different current densities; the results show that lower gas flow rate can improve the economy of the process.



Defect and Diffusion Forum (Volumes 312-315)

Edited by:

Andreas Öchsner, Graeme E. Murch and João M.P.Q. Delgado






A.H. El-Shazly "Augmentation of the Performance of Batch Electrocoagulation Unit by Using Gas Sparging", Defect and Diffusion Forum, Vols. 312-315, pp. 700-707, 2011

Online since:

April 2011





[1] M. M. Emamjomeh, and M. Sivakumar: J. Environ. Manag. Vol. 90 (2009), p.1663.

[2] G. Chen: Sep. Purif. Technol. Vol. 38 (2004), p.11.

[3] N. Daneshvar, A.H. Sorkhabi and M.B. Kasiri: J. Hazard. Mater. Vol. B 112 (2004), p.55.

[4] L. Fan,F. Yang and W. Yang: Sep. Purif. Technol. Vol. 34 (2004), p.89.

[5] M.Y. A Mollah, P. Morkovsky, J.A.G. Gomes, M. Kesmez, J. Parga and D.L. Cocke: J. Hazard. Mater. Vol. 114 (2004), p.199.

DOI: 10.1016/j.jhazmat.2004.08.009

[6] M.Y.A. Mollah, S.R. Pathak, P.K. Patil, M. Vayuvegula, T.S. Agrawal, J.A.G. Gomes, M. Kesmez and D.L. Cocke:. J. Hazard. Mater. Vol. 109 (2004), p.165.

[7] M.Y.A. Mollah, R. Schennach, J.R. Parga and D.L. Cocke: J. Hazard. Mater. Vol. 84 (2001), p.29.

[8] M.F. Pouet, and A. Grasmick: Water Sci. Technol. Vol. 31 (1995), p.275.

[9] J.G. Ibanez, M. Takimoto, and R.C. Vasquez: J. Chem Educ. Vol. 72 (1995), p.1050.

[10] J.Q. Jiang, N. Graham, C. Andre, G.H. Kelsall, N.P. Brandon: Water Res. Vol. 36 (2002), p.4064.

[11] J.Q. Jiang, N. Graham, C. Andre, G.H. Kelsall, N.P. Brandon, M.J. Chipps Water Sci. Technol.: Water Supply, Vol. 2 (2002), p.289.

[12] A.Y. Hosny: Sep. Technol. Vol. 6 (1996), p.9.

[13] X. Chen, G. Chen and P.L. Yue: Environ. Sci. Technol. Vol. 36 (2002), p.778.

[14] M.Y. Ibrahim, S.R. Mostafa, M.F.M. Fahmy and A.I. Hafez: Sep. Sci. Technol. Vol. 36 (2001), p.3749.

[15] L. Alexandrova, T. Nedialkova, and I. Nishkov: Int. J. Miner. Process. Vol. 41 (1994), p.285.

[16] V.D. Gvozdez, and B.S. Ksenofontov: Khimiya I Tekhnologiya Vody, Vol. 8 (1986), p.70.

[17] L. Guang, Y. Xiaogang and D. Gance: Chem. Eng. Sci. Vol. 64 (2009), p.5104.

[18] W.D. Deckwer, Bubble Column Reactors. Wiley, New York, USA (1992).

[19] N. Ibl, R. Kind and E. Adam: An Quim Vol. 71 (1975), p.1008.

[20] L. Sigrist, O. Dessenbach and N. Ibl: J. Appl. Electrochem. Vol. 22 (1979), p.1393.

[21] G.H. Sedahmed, M.S. Abdo, M.A. Kamal, O.A. Fadaly and H.M. Osman: Chem. Eng. Process. Vol. 40 (2001), p.195.

[22] S.A. Nosier, A. El-Kayar, H.A. Farag and G.H. Sedahmed: Int. Commun. Heat Mass Transfer Vol. 24 (1997), p.733.

[23] M.A. Zarraa, M.Z. El-Abd, Y.A. Eltawil, H.A. Farag and G.H. Sedahmed: Chem. Eng. J. and Biochem. Eng. J. Vol. 54 (1994), p.51.

[24] M.M. Zaki, I. Nirdosh, and G.H. Sedahmed: Chem. Eng. Comm. Vol. 186 (2001), p.43.

[25] K.J. Hwang, and C.E. Hsu: Chem. Eng. J. Vol. 151, (2009), p.160.

[26] C. Cabassud, S. Laborie, L.D. Bourlier and J.M. Lainé: J. Membr. Sci. Vol. 181 (2001), p.57.

In order to see related information, you need to Login.