Effect of Co-Doping of Nano Silver, Carbon and Nitrogen on Titania on the Visible Light Activity for Methylorange Degradation


Article Preview

Co-doping of nanosilver, carbon and nitrogen is done on titania to get improved photodegradation of pollutants when compared to single doping. Anion doping extends the absorption of TiO2 to the visible region; whereas noble metal NP doping prevents the recombination of photoinduced electrons and holes. Doped TiO2 prepared using sol gel method allows efficient dispersion of nano silver and thus enhances the photodegradability. X-ray Diffraction analysis shows the efficient dispersion of incorporated nano silver over anatase TiO2. The visible light absorption is confirmed from UV-Vis Diffuse Reflectance spectral studies. Photocatalytic activity is investigated by the degradation of methyl orange as a model pollutant. Efficient degradation in visible light shows the synergetic effect of carbon and nitrogen doping as well as nano silver loading on the performance of TiO2.



Defect and Diffusion Forum (Volumes 312-315)

Edited by:

Prof. Andreas Öchsner, Prof. Graeme E. Murch and Prof. João M.P.Q. Delgado




N. N. Binitha et al., "Effect of Co-Doping of Nano Silver, Carbon and Nitrogen on Titania on the Visible Light Activity for Methylorange Degradation", Defect and Diffusion Forum, Vols. 312-315, pp. 776-781, 2011

Online since:

April 2011




[1] J.M. Herrmann, M. Vautier and C. Guillard: J. Catal. Vol. 201 (2001), p.46.

[2] A.B. Santos, F.J. Cervantes and J.B. Lier: Bioresour. Technol. Vol. 98 (2007), p.2369.

[3] J.G. Yu, H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu and W.K. Ho: J. Phys. Chem. B Vol. 107 (2003), p.13871.

[4] J.C. Zhao, T.X. Wu, K.Q. Wu, K. Oikawa, H. Hidaka and N. Serpone: Environ. Sci. Technol. Vol. 32 (1998), p.2394.

[5] B. Braconnier, C. A. Páez, S. Lambert, C. Alié, C. Henrist, D. Poelman, J. P. Pirard, R. Cloots and B. Heinrichs: Microporous Mesoporous Mater. Vol. 122 (2009), p.247.

DOI: https://doi.org/10.1016/j.micromeso.2009.03.007

[6] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga: Sci. Vol. 293 (2001), p.269.

[7] H. Irie, Y. Watanabe and K. Hashimoto: J. Phys. Chem. B Vol. 107 (2003), p.5483.

[8] W. Choi, A. Termin and M.R. Hoffmann: J. Phys. Chem. Vol. 98 (1994), p.13669.

[9] J. Lin and J.C. Yu: J. Photochem. Photobiol. A-Chem. Vol. 116 (1998), p.63.

[10] S.U.M. Khan, M. Al-Shahry and W.B. Ingler Jr.: Sci. Vol. 297 (2002), p.2243.

[11] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura: Appl. Catal. A: Gen. Vol. 265 (2004), p.115.

[12] W. Ho, J.C. Yu and S. Lee: Chem. Commun. Vol. 111 (2006), p.1115.

[13] J. Herrmann, J. Disdier and P. Pichat: J. Phys. Chem. Vol. 90 (1986), p.6028.

[14] B. Ohtani, K. Iwai, S. Nishimoto and S. Sato: J. Phys. Chem. B Vol. 101 (1997), p.3349.

[15] H. Zhang, G. Wang, D. Chen, X. Lv and J. Li: Chem. Mater. Vol. 20 (2008), p.6543.

[16] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida and T. Watanabe: J. Am. Chem. Soc. Vol. 130 (2008), p.1676.

[17] H. Wang and J.P. Lewis: J. Phys. Condens. Matter. Vol. 18 (2006), p.421.

[18] P. Raveendran, J. Fu and S.L. Wallen: J. Am. Chem. Soc. Vol. 125 (2003), p.13940.

[19] N. Binitha, K. Ranjanaa, M.R. Resmi and Z. Yaakob: Personal communication.

[20] S. Senthilkumaar, K. Porkodi, R. Gomathi, A. Geetha Maheswari and N. Manonmani: Dyes Pigm. Vol. 69 (2006), p.22.

[21] P. Maruthamuthu, M. Ashokkumar, K. Gurunathan, E. Subramanian and M.V.C. Sastri: Int. J. Hydrogen Energy Vol. 14 (1989), p.525.

[22] B. Neppolian, S. Sakthivel, M. Palanichamy, B. Arabindoo and V. Murugasen: J Hazard Mater B Vol. 89 (2002), p.303.

[23] J.M. Herrmann: Catal Today Vol. 24 (1995), p.157.

[24] X. Yang, Y. Wang, L. Xu, X. Yu and Y. Guo: J. Phys. Chem. C Vol. 112 (2008), p.11481.

[25] R. Georgekutty, M.K. Seery and S.C. Pillai: J. Phys. Chem. C Vol. 112 (2008), p.13563.