Effect of Impinging Jet on Heat Conduction in Workpieces Irradiated by a Moving Heat Source

Abstract:

Article Preview

A three dimensional conductive field is analyzed and solved by means of the COMSOL Multiphysics code. The investigated work-pieces are made up of a simple brick-type solid. A laser source with combined donut-Gaussian distributions is considered moving with a constant velocity along motion direction. The solid dimension along the motion direction is assumed to be infinite or semi-infinite, while finite width (2ly) and thickness (s) are considered. Thermal properties are considered temperature dependent and the materials are considered isotropic. Surface heat losses toward the ambient are taken into account. Several convective heat flux values on the upper surface, with corresponding Biot numbers, and Peclet numbers are considered with negligible radiative heat losses.Results are presented in terms of profile temperatures to evaluate the effect of impinging jet.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Edited by:

Andreas Öchsner, Graeme E. Murch and João M.P.Q. Delgado

Pages:

924-928

DOI:

10.4028/www.scientific.net/DDF.312-315.924

Citation:

N. Bianco et al., "Effect of Impinging Jet on Heat Conduction in Workpieces Irradiated by a Moving Heat Source", Defect and Diffusion Forum, Vols. 312-315, pp. 924-928, 2011

Online since:

April 2011

Export:

Price:

$35.00

[1] I. Tanasawa and N. Lior: Heat and mass transfer in material processing (Hemisphere, 1992).

[2] R. Viskanta and T.L. Bergman: Heat Transfer in Material Processing (in Handbook of Heat Transfer, Chap. 18, McGraw-Hill, 1998).

[3] S.Z. Shuja, B.S. Yilbas and M. O. Budair: Numeric. Heat Transf. A Vol. 33 (1998), p.315.

[4] S.Z. Shuja and B.S. Yilbas: Appl. Surf. Sci. Vol. 167 (1999), p.134.

[5] N. Bianco and O. Manca: ASME HTD, Vol. 366 (2000), p.285.

[6] N. Bianco, O. Manca and S. Nardini: ASME HTD Vol. 369 (2001), p.11.

[7] J.F. Li, L. Li and F.H. Stott: Int. J. Heat Mass Transf. Vol. 47 (2004), p.1159.

[8] J.C. Rozzi, F.E. Pfefferkon, F.P. Incropera, Y.C. Shin: J. Heat Transf. Vol. 120 (1998), p.899.

[9] J.C. Rozzi, F.P. Incropera and Y.C. Shin: J. Heat Transf. Vol. 120 (1998), p.907.

[10] J.C. Rozzi, F.E. Pfefferkon, F.P. Incropera and Y.C. Shin: Int. J. Heat Mass Transf. Vol. 43 (2000), p.1409.

[11] J.C. Rozzi, F.P. Incropera and Y.C. Shin: Int. J. Heat Mass Transf. Vol. 43 (2000), p.1425.

[12] Z.B. Hou and R. Komanduri: Int. J. Heat Mass Transf. Vol. 43 (2000), p.1679.

[13] B.S. Yilbas, S.Z. Shuja and M.S.J. Hashmi: J. Mat. Process. Tech. Vol. 136 (2003), p.12.

[14] G. Gutierrez, and J. G . Araya: Temperature Distribution in a Finite Solid due to a Moving Laser Beam (Proc. of 2003 ASME IMECE, paper n. IMECE2003-42545, 2003).

[15] N. Bianco, O. Manca and V. Naso: Numerical analysis of transient temperature fields in solids by a moving heat source (3rd Int. Conf. Heat Transfer, Fluid Mechanics Thermodynamics, Cape Town, South Africa, 2004), in press.

[16] H.E. Cline and T.R. Anthony: J. Appl. Phys. Vol. 48 (1977), p.3895.

[17] M.F. Modest and H. Abakians: J. Heat Transf. Vol. 108 (1986), p.597.

[18] N. Bianco, O. Manca, S. Nardini: Two dimensional transient analysis of temperature distribution in a solid irradiated by a Gaussian laser source (Proceedings of ESDA04, paper n. ESDA2004-58286, 7TH Biennial Conference on Engineering Systems Design and Analysis, Manchester, United Kingdom, 2004).

DOI: 10.1115/esda2004-58286

[19] V. Shankar and D. Gnamamuthu: J. Thermophys. Heat Transf. Vol. 1 (1987), p.182.

[20] Metals Handbook (9th Ed. ASM, Metal Park, OH, 1981).

In order to see related information, you need to Login.