Specific Aspects of Internal Corrosion of Nuclear Clad Made of Zircaloy


Article Preview

In PWR, the Zircaloy based clad is the first safety barrier of the fuel rod, it must prevent the dispersion of the radioactive elements, which are formed by fission inside the UO2 pellets filling the clad. We focus here on internal corrosion that occurs when the clad is in tight contact with the UO2 pellet. In this situation, with temperature of 400 °C on the internal surface of the clad, a layer of oxidised Zircaloy is formed with a thickness ranging from 5 to 15 µm. In this paper, we will underline the specific behaviour of this internal corrosion layer compared to wet corrosion of Zircaloy. Simulations will underline the differences of stress field and their influences on corresponding dissolved oxygen profiles. The reasons for these differences will be discussed as function of the mechanical state at inner surface of the clad which is highly compressed. Differences between mechanical conditions generated by an inner or outer corrosion of the clad are studied and their influences on the diffusion phenomena are highlighted.



Defect and Diffusion Forum (Volumes 323-325)

Edited by:

I. Bezverkhyy, S. Chevalier and O. Politano




J.B. Minne et al., "Specific Aspects of Internal Corrosion of Nuclear Clad Made of Zircaloy", Defect and Diffusion Forum, Vols. 323-325, pp. 227-232, 2012

Online since:

April 2012




[1] B. Cox, J. Nucl. Mater. 336 (2005) 331-368.

[2] Waterside corrosion of zirconium alloys in nuclear power plants, IAEA-TECDOC-996, Vienna (1998).

[3] L. Desgranges, seminar proceedings, Cadarache, NEA, OCDE, (1998).

[4] K.T. Kim, J. Nucl. Mater. 404 (2010) 128-137.

[5] C.C. Dollins, M. Jursich, J. Nucl. Mater. 113 (1983) 19-24.

[6] J. Godlewski, P. Bouvier, G. Lucazeau, L. Fayette, in: Proc. 12th Int. Symp. Zirc. Nucl. Ind. (1998) 877-900.

[7] F. Gibert et al., in : Water chemistry and corrosion control of cladding and primary circuit components, IAEA-TECDOC-1128, Vienna (1998) 95-102.

[8] N. Bérerd, A. Chevarier, N. Moncoffre, H. Jaffrezic, J. Appl. Phys. 97 (2005).

[9] J. Debuigne, Ph.D. Thesis, Université de Paris, France (1966).

[10] J. Favergeon, T. Montesin, C. Valot, G. Bertrand, Def. Diffus. Forum 203-205 (2002) 231-242.

[11] J. Favergeon, Ph.D. Thesis, Université de Bourgogne, France (2001).

[12] S. Garruchet, Ph.D. Thesis, Université de Bourgogne, France (2005).

[13] J.C. Larché, J.W. Cahn, Acta Metall. 30 (1982), 1835-1845.

[14] N. Creton, V. Optasanu, T. Montesin, S. Garuchet, Ann. Chim. -Sci. Mat. 33/Suppl. 1 (2008) 165-172.

[15] E. de Paula E Silva, J. Com-Nougué, G. Béranger, P. Lacombe, Scripta Met. 5 (1971) 795-800.

[16] M. Parise, O. Sicardy, G. Cailletaud, J. Nucl. Mater. 256 (1998) 35-46.

[17] J. Godlewski, Ph.D. Thesis, Université de Compiègne, France (1990).

[18] J. Godlewski, in: Proc. 10th Int. Symp. Zirc. Nucl. Ind. (1994) 663-683.

Fetching data from Crossref.
This may take some time to load.