Optimisation of Metallic Interconnects for Hydrogen Production by High Temperature Water Vapour Electrolysis

Abstract:

Article Preview

For economical and environmental reasons, hydrogen is considered as a major energetic vector for the future. Hydrogen production via high temperature water vapour electrolysis (HTE) is a promising technology. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800°C enables the use of metallic materials as interconnects. Chromia forming alloys are among the best candidates. The interconnect material chosen in the present study is a ferritic stainless steel with 18% chromium content. High temperature corrosion resistance and electrical conductivity of the alloy was tested in both cathode (H2/H2O) and anode (O2/H2O) atmospheres. Corrosion products were then characterized by SEM-EDX and XRD. Moreover chromium evaporation measurements were carried out under anode atmosphere.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Edited by:

I. Bezverkhyy, S. Chevalier and O. Politano

Pages:

239-244

Citation:

M.R. Ardigo et al., "Optimisation of Metallic Interconnects for Hydrogen Production by High Temperature Water Vapour Electrolysis", Defect and Diffusion Forum, Vols. 323-325, pp. 239-244, 2012

Online since:

April 2012

Export:

Price:

$38.00

[1] W.Z. Zhu, S.C. Deevi, Materials Research Bulletin 38 (2003) 957–972.

[2] W.Z. Zhu, S.C. Deevi, Materials Science and Engineering A348 (2003) 227–243.

[3] J. W. Fergus, Materials Science and Engineering A397 (2005) 271-283.

[4] Z. Yang, K. S. Weil, D. M. Paxton, J. W. Stevenson, Journal of The Electrochemical Society 150 (9) (2003) A1188-A1201.

[5] W.J. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser, Materials at high Temperatures 20 (2003) 115–127.

DOI: https://doi.org/10.1179/mht.2003.015

[6] T. Horita, Y. Xiong, K. Yamaji, N. Sakai, H. Yokokawa, Journal of The Electrochemical Society, 150 (3) (2003) A243-A248.

[7] P. Kofstad, High Temperature Corrosion, Elsevier Applied Science, London, (1988).

[8] J.W. Fergus, Materials Science and Engineering A397 (2005) 271–283.

[9] G. Hultquist, B. Tveten, E. Hörnlund, Oxidation of Metals 54 (2000) 1.

[10] S. Henry, J. Mougin, Y. Wouters, J. -P. Petit, A. Galerie, Materials at High Temperatures 17 (2000) 231.

[11] M. Michalik, M. Hänsel, J. Zurek, L. Singheiser, W.J. Quadakkers, Materials at High Temperatures 22 (2005) 213.

[12] H. Asteman, J.E. Svensson, L.G. Johansson, Oxidation of Metals 57 (2002) 193.

[13] S. Chandra-Ambhorn, Y. Wouters, L. Antoni, F. Toscan, A. Galerie, Journal of Power Sources 171 (2007) 688–695.

[14] B. Tveten, G. Hultquist, D. Wallinder, Oxidation of Metals 55 (2001) 279-289.

[15] S. Fontana, PhD thesis, ICB Dijon, France (2009).

[16] S. Fontana, S. Chevalier, G. Caboche, Journal of Power Sources 193 (2009) 136-145.

[17] A. Holt, P. Kofstad, Solid State Ionics 117 (1999) 21–25.

[18] A. Holt, P. Kofstad, Solid State Ionics 100 (1997) 201–209.

[19] F. Desnoyer, Master report, Grenoble INP, France (2010).

[20] W. Chandra-Ambhorn, Internal report, Grenoble INP (2009).

[21] S. Chandra-Ambhorn, PhD thesis, Grenoble INP, France (2006).

Fetching data from Crossref.
This may take some time to load.