Controlling the Molecular Interactions to Improve the Diffusion Barrier of Biosourced Polymers to Organic Solutes

Abstract:

Article Preview

The presented original work examines how sorption and diffusion can be combined at molecular scale in nanocomposite materials to improve the resistance to diffusion of biosourced or biodegradable polymers. The concept is applied to apolar penetrants and discussed on polycaprolactone (PCL) containing organomodified montmorillionites acting as nanoadsorbents.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Edited by:

I. Bezverkhyy, S. Chevalier and O. Politano

Pages:

269-274

DOI:

10.4028/www.scientific.net/DDF.323-325.269

Citation:

X. Y. Fang et al., "Controlling the Molecular Interactions to Improve the Diffusion Barrier of Biosourced Polymers to Organic Solutes", Defect and Diffusion Forum, Vols. 323-325, pp. 269-274, 2012

Online since:

April 2012

Export:

Price:

$38.00

[1] J. D. Floros and K. I. Mastos, in: Introduction to modified atmosphere packaging, edited by J. H. Han, Innovation in food packaging, chapter, 10, Elsevier Academic (2005).

[2] A. J. Domb, J. Kost and D. M. Wiseman: Handbook of biodegradable polymers, Harwood Academic Publishers, Amsterdam, (1997).

[3] R. M. Johnson, L. Y. Mwaikambo and N. Tucker: Biopolymers, chapter, 3, Rapra Technology (2003), p.14.

[4] R. A. Auras, in: Solubility of gases and vapors in polylactide polymers, edited by T.M. Letcher, Thermodynamics, Solubility and Environmental Issues, chapter, 19, Elsevier (2007), p.343.

DOI: 10.1016/b978-044452707-3/50021-5

[5] A. Alentiev and Y. Yampolskii, in: Prediction of gas permeation parameters of polymers, edited by Y. Yampolskii, I. Pinnau and B. D. Freeman, Materials Science of Membranes for Gas and Vapor Separation, John Wiley & Sons (2006), p.211.

DOI: 10.1002/047002903x.ch7

[6] L. H. Sperling: Concentrated solutions, phase separation behavior and diffusion, Introduction to Physical Polymer Science, chapter, 4, John Willey & Sons (2006), p.146.

[7] J. Bicerano: Transport of small penetrant molecules, Prediction of Polymer Properties, 3rd Ed, chapter, 15, Marcel Dekker (2002).

[8] S. A. Ster, and J. R. Fried: Permeability of polymers to gases and vapors, Physical properties of polymers handbook, 2nd Edition, Springer Science (2007), p.1033.

DOI: 10.1007/978-0-387-69002-5_61

[9] E. Jacquelot, E. Espuche, J. -F. Gerard, J. Duchet, P. Mazabraud: Journal of Polymer Science: Part B: Polymer Physics, 44(2006), p.431.

[10] Z.F. Wang, B. Wang, N. Qi, H.F. Zhang, L.Q. Zhang: Polymer, 46 (2005), p.719.

[11] G. Gorrasi, M. Tortora, V. Vittoria, D. Kaempfer, R. Mulhaupt: Polymer, 44 (2003), p.3679.

DOI: 10.1016/s0032-3861(03)00284-2

[12] O. Vitrac and M. Hayert: Chemical Engineering Science, 62 (2007), p.2503.

[13] L. Shen and Z. Chen: Chemical Engineering Science, 62 (2007), p.3748.

[14] R. Klages: Microscopic chaos, fractals and transport in nonequilibrium statistical mechanics, World Scientific (2007), p.441.

[15] H. Wang, J. Keum, A. Hiltner, E. Baer: Macromolecules, 42 (2009), p.7055.

[16] S. Marras, K. Kladi, I. Tsivintzelis, I. Zuburtikudis, C. Panayiotou: Acta Biomater, 4 (2008), p.756.

[17] G. Gillet, O. Vitrac and S. Desobry: Industrial Engineering Chemistry Research 48 (2009), p.5285.

[18] G. Gillet, O. Vitrac and S. Desobry: Industrial Engineering Chemistry Research 10 (2010), p.1021.

[19] O. Vitrac and G. Gillet: International Journal of Chemical Reactor Engineering, 8 (2010).

[20] R. Roe, H. Bair, C. Gieniewski: Journal of Applied Polymer Science, 18 (1974), p.843.

In order to see related information, you need to Login.