Diffusion in Internal Oxidation Reactions


Article Preview

When an alloy component is selectively oxidised but cannot reach the surface quickly enough to form a scale, then internal oxidation results. In this process, a gas phase oxidant dissolves in an alloy and diffuses inwards, reacting with a dilute solute metal to precipitate metal oxide or carbide, etc. Penetration kinetics are parabolic, the rate being controlled by oxidant diffusion and the concentration of reacting metal. Rates are predicted from classical oxidation theory on the basis that the reaction product is exceedingly stable, no solute metal remains in the reacted alloy, and oxidant diffusion is via a solvent metal matrix. This paper is concerned with situations where these approximations fail: the development of low stability precipitates and the growth of elongated precipitates which allow interfacial diffusion of the oxidant. Effects on the rates of internal oxidation are discussed.



Defect and Diffusion Forum (Volumes 323-325)

Edited by:

I. Bezverkhyy, S. Chevalier and O. Politano




D. J. Young, "Diffusion in Internal Oxidation Reactions", Defect and Diffusion Forum, Vols. 323-325, pp. 283-288, 2012

Online since:

April 2012





[1] R.C. John, in: Corrosion 96, NACE, Houston, TX (1996), p.171.

[2] D.J. Young: High Temperature Oxidation and Corrosion of Metals, (Elsevier, 2008).

[3] C. Wagner: Z. Elektrochem., 63 (1959) p.772.

[4] R.A. Rapp: Corrosion 21 (1965), p.382.

[5] D.J. Young and O. Ahmed: Mater. Sci. Forum, 269-372 (2001), p.93.

[6] M. Udyavar and D.J. Young: Corros. Sci., 42 (2000), p.861.

[7] S. Ford: PhD Thesis, University of New South Wales (2004).

[8] J.S. Kirkaldy and D.J. Young: Diffusion in the Condensed State, Institute of Metals (1978).

[9] S.W. Guan and W.W. Smeltzer: Oxid. Met., 42 (1994) p.375.

[10] L.C. Brown and J.S. Kirkaldy: Trans. AIME, 230 (1964) p.223.

[11] U. Krupp and H. -J. Christ: Oxid. Met., 52 (1999) p.277.

[12] J.S. Kirkaldy: Canad. Met. Q. 9 (1969), p.35.

[13] E.K. Ohriner and J.F. Morral: Scripta Met., 13 (1979), p.7.

[14] D.J. Young, J.S. Kirkaldy and W.W. Smeltzer: J. Electrochem. Soc., 123 (1976) p.1758.

[15] R.A. Rapp, D.F. Frank and J.V. Armitage: Acta Met., 12 (1964) p.505.

[16] J. Megasur and G.H. Meier: Met. Trans., 7A (1976) p.1133.

[17] M.A.A. Motin, J. Zhang and D.J. Young: J. Electrochem. Soc, 157 (2010), p.325.

[18] D.J. Young and O. Ahmed: Materials Science Forum, 369-372 (2001) p.93.

[19] S. Ford, P.R. Munroe and D.J. Young, in: John Stringer Symposium eds. P.T. Tortorelli, I.G. Wright and P.Y. Hou, ASM International, Materials Park, OH (2003), p.77.

[20] D.P. Whittle, Y. Shida, G.C. Wood, F.H. Stott and B.D. Basytow, Phil. Mag., 46 (1982), p.931.

[21] J. -W. Lee and M. Tomozawa: J. Non-Cryst. Sol., 353 (2007) p.4633.

[22] R.R. Razouk, L.N. Nie, and B.E. Deal: J. Electrochem. Soc., 128 (1981) p.2214.