Effect of Phosphoric Acid Treatment on Isothermal High Temperature Oxidation Behaviour of AISI 304 Stainless Steel at 800°C


Article Preview

Phosphoric acid treatment is used as a way to improve the high temperature oxidation resistance of a chromia-forming AISI 304 steel. Chromia-forming steels are excellent candidates to resist to high temperature oxidizing atmospheres because of the formation of protective oxide scales. The oxide scale growth mechanisms are studied by exposing phosphoric acid-treated and untreated 304 steel samples to high temperature conditions in air. The analyses were carried out by means of thermogravimetry, and in situ X-ray diffraction (XRD). The experimental results show that the phosphoric acid treatment does not have a beneficial effect on cyclic high temperature oxidation (up to 70h of the oxidation test) of AISI 304 steel because of growth of a layer mainly formed by external cation diffusion which grows very quickly. The isothermal high temperature oxidation of this steel at 800°C in air shows a very fast initial iron oxidation towards the external interface, allowing to chromium element to be more available to the internal interface to form a continuous chromia layer, thus causing the establishment of a parabolic oxidation regime and leading to a beneficial reduction of the oxidation rate (after 70h of the oxidation test).



Defect and Diffusion Forum (Volumes 323-325)

Edited by:

I. Bezverkhyy, S. Chevalier and O. Politano




F. Riffard et al., "Effect of Phosphoric Acid Treatment on Isothermal High Temperature Oxidation Behaviour of AISI 304 Stainless Steel at 800°C", Defect and Diffusion Forum, Vols. 323-325, pp. 359-364, 2012

Online since:

April 2012




[1] G. Schumacher, F. Dettenwanger, M. Schütze, U. Hornauer, E. Richter, E. Wieser, W. Möller : Intermetallics Vol. 7 (1999), p.1113.

DOI: https://doi.org/10.1016/s0966-9795(99)00032-1

[2] M. Kumagai, K. Shibue, M. Kim, M. Yonemitsu : Intermetallics Vol. 4 (1956), p.557.

[3] Y. Ikematsu, T. Hanamura, H. Morikawa, M. Tanino, J. Takamura : Proc. JIMIS-6 (1991), p.191.

[4] S. Taniguchi : Mater. Corros. Vol. 48 (1997), p.1.

[5] M. Hald, M. Schütze : Mater. Sci. Eng. Vol. A239-240 (1997), p.847.

[6] G. Schumacher, C. Lang, M. Schütze, U. Hornauer, E. Richter, E. Wieser, W. Möller : Mater. Corros. Vol. 50 (1999), p.162.

[7] B. Panicaud, J.L. Grosseau-Poussard, C. Huvier, S. Rebeyrat, J.F. Dinhut : Mat. Sci. Eng. A Vol. 356 (2003), p.434.

DOI: https://doi.org/10.1016/s0921-5093(03)00157-6

[8] W. B. Retallick, M. P. Brady, D. L. Humphrey : Intermetallics Vol. 6 (1998), p.335.

[9] G. Schumacher, F. Dettenwanger, M. Schütze, A. Iberl, D. Reil : Oxid. Met. Vol. 54 (2000), p.317.

DOI: https://doi.org/10.1023/a:1004606513758

[10] S. Becker, A. Rahmel, M. Schon, M. Schütze : Oxid. Met. Vol. 38 (1992), p.425.

[11] G. Desperet, Thèse de Doctorat, Université Paris VI (2004).

[12] S.Y. Brou, R. Siab, G. Bonnet, J.L. Grosseau-Poussard : Scripta Materialia Vol. 56 (2007), p.517.

DOI: https://doi.org/10.1016/j.scriptamat.2006.11.029

[13] S.Y. Brou, G. Bonnet, J.L. Grosseau-Poussard : Intermetallics Vol. 19(7) (2011), p.887.

[14] M-R Yang, S.K. Wu : Acta Materalia Vol. 50 (2002), p.691.

[15] S.K. Wu, M-R Yang, J.R. You : Intermetallics Vol. 15 (2007), p.145.

[16] R. Siab, Thèse de Doctorat, Université d'Annaba (2004).

[17] L. Antoni, J.M. Herbelin : Proc. Of an EFC Workshop, Frankfurt/main (1999), European Federation of Corrosion Publications n° 27, p.187.

[18] C. Wagner : Corros. Sci. Vol. 5 (1965), p.751.

[19] M.J. Bennett, D.P. Moon : The role of active elements in the oxidation behaviour of high temperature metals and alloys, (ed. E. Lang, Elsevier), 1989, Amsterdam.

[20] M. Landkof, A.V. Levy, D.H. Boone, R. Gray, E. Yaniv : Corrosion-NACE Vol. 41 (1985), p.344.

[21] H. Hindam, D.P. Whittle : Oxid. Met. Vol. 18 (1982), p.245.