Entropy Production and Stress–Deformation Effect on Interdiffusion

Abstract:

Article Preview

A general, consistent with linear irreversible thermodynamics, theory of stress and elastic deformation during interdiffusion is shown. Special consideration is given to the entropy balance and its production rate during diffusion in Cu-Fe-Ni alloys. The entropy produced during diffusion does not depend on the reference frame and is always positive. The paper spans the gap between the Darken method, linear irreversible thermodynamics and treatments by Stephenson and Svoboda.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Edited by:

I. Bezverkhyy, S. Chevalier and O. Politano

Pages:

43-48

Citation:

M. Danielewski "Entropy Production and Stress–Deformation Effect on Interdiffusion", Defect and Diffusion Forum, Vols. 323-325, pp. 43-48, 2012

Online since:

April 2012

Export:

Price:

$38.00

[1] L. Onsager: Phys Rev 37 (1931) p.405.

[2] L. Onsager: Ann NY Acad Sci 46 (1945) p.241.

[3] A. D. Smigelskas and E. O. Kirkendall: Trans. AIME 171 (1947) p.130.

[4] L. S. Darken: Trans. AIME 174 (1948) p.184.

[5] H. Brenner: Physica A 349 (2005) p.60.

[6] H. Brenner: Physica A 370 (2006) p.190.

[7] J. Svoboda, F. D. Fischer and P. Fratzl: Acta Mater 54 (2006) p.3043.

[8] J. Svoboda, F. D. Fischer and E. Gamsjager: Acta Mater. 56 (2008) p.351.

[9] F. D. Fischer and J. Svoboda: Acta Mater. 58 (2010) p.2698.

[10] J. Svoboda and F. D. Fischer: Acta Mater. 57 (2009) p.4649.

[11] K. Holly and M. Danielewski: Phys Rev B 50 (994) p.13336.

[12] M. Danielewski and B. Wierzba: Acta Mater. 58 (2010) p.6717.

[13] M. Danielewski and B. Wierzba: Phil. Mag., 89, (2009) p.331.

[14] B. Wierzba and M. Danielewski: Phil. Mag. 91, (2011) p.3228.

[15] B. Wierzba: Physica A 391 (2012) p.56.

[16] L. Kaufman and B. Bernstein: Computer Calculations of Phase Diagrams with Special Reference to Refractory Materials (Academic Press, New York, 1970).

[17] K. J. Rönkä, A. A. Kodentsov, P. J. J. Van Loon, J. K. Kivilahti and F. J. J. Van Loo: Metall. and Mat. Trans. A, 27A (1996) p.2229.

[18] M. Danielewski, B. Wierzba: Physica A 387 (2008) p.745.

[19] S. V. Divinski, F. Hisker, C. Herzig, R. Filipek and M. Danielewski: Defect and Diffusion Forum, 237-240 (2005) p.50.

DOI: https://doi.org/10.4028/www.scientific.net/ddf.237-240.50

[20] Steel - A Handbook for Materials Research and Engineering (Springer-Verlag, Verlag Stahleisen, vol. 2 1993).

[21] Steel - A Handbook for Materials Research and Engineering (Springer-Verlag, Verlag Stahleisen, vol. 1, 1992).

[22] G. Béranger, F. Duffaut, J. Morlet, J-F Tiers, eds: Fe-Ni Alloys (Intercept LTD, 1996).

[23] A. Teklu, H. Ledbetter, S. Kim, L. A. Boatner, M. McGuire and V. Keppens: Metal. and Mater. Trans. A, 35A (2004) p.3149.

[24] H. M. Ledbetter and S. A. Kim: J. of Materials Sci. 23 (1988) p.2129.

[25] W. Nernst: Phys Z. Chem. 4 (1889) p.129.

[26] M. Planck: Ann. Phys. Chem. 40 (1890) p.561.

[27] Information on http: /cadiff. diffusion. pl.

[28] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling: Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press 1992).

DOI: https://doi.org/10.2307/1269484

[29] M. Danielewski, B. Wierzba, R. Bachorczyk-Nagy and M. Pietrzyk: J. Phase Equlibria and Diffusion, 27 (2006) p.691.

[30] B. Wierzba, M. Danielewski, et al.: Defect and Diff. Forum 264 (2007) p.47.

[31] S. T. Frank, U. Södervall and C. Herzig: Phys Stat Sol b 191 (1995) p.45.

[32] Thermo-Calc is a registered trade mark of Thermo-Calc Software.

[33] FactSage is a registered trade mark of ESM Software, Inc.

Fetching data from Crossref.
This may take some time to load.