Effect of Mn Thickness on the Mn-Ge Phase Formation during Reactions of 50 nm and 210 nm Thick Mn Films Deposited on Ge (111) Substrate

Abstract:

Article Preview

An alternative solution for producing logic devices in microelectronics is spintronics (SPIN TRansport electrONICS). It relies on the fact that in a magnetic layer, the electrical current can be spin polarized. To fabricate such components, a material whose electronic properties depend on its magnetic state is needed. The Mn-Ge system presents a lot of phases with different magnetic properties, which can be used for spintronics. The most interesting phase among the Mn-Ge system is Mn5Ge3 because of its stability at high temperatures, its Curie temperature which is close to room temperature and its ability of injecting spin-polarized electrons into semiconductors. In this paper, we have combined Reflection High-Energy Electron Diffraction (RHEED) and X-ray Diffraction (XRD), to study the sequence of formation of MnxGey phases during reactive diffusion of both a 50 nm and a 210 nm thick Mn films deposited by Molecular-Beam Epitaxy (MBE) on Ge (111).

Info:

Periodical:

Defect and Diffusion Forum (Volumes 323-325)

Edited by:

I. Bezverkhyy, S. Chevalier and O. Politano

Pages:

439-444

Citation:

O. Abbes et al., "Effect of Mn Thickness on the Mn-Ge Phase Formation during Reactions of 50 nm and 210 nm Thick Mn Films Deposited on Ge (111) Substrate", Defect and Diffusion Forum, Vols. 323-325, pp. 439-444, 2012

Online since:

April 2012

Export:

Price:

$38.00

[1] G. Schmidt, R. Fiederling, M. Keim, G. Reuscher, T. Gruber, W. Ossau, A. Waag, and L. W. Molenkamp: Superlattices Microstruct. Vol. 27 (2000), p.297.

DOI: https://doi.org/10.1006/spmi.2000.0830

[2] Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno and D.D. Awschalom: Nature (London) Vol. 402 (1999), p.790.

DOI: https://doi.org/10.1038/45509

[3] N. Pinto, L. Morresi, R. Gunnella, R. Murri, F. D'Orazio, F. Lucari, S. Santucci, P. Picozzi, M. Passacantando and A. Verna Journal of Materials Science: Materials in Electronics 14, no. 5-7, (2003), p.337.

DOI: https://doi.org/10.1016/s0304-8853(03)00041-6

[4] R.P. Panguluri, C. Zeng, H.H. Weitering, J.M. Sullivan, S.C. Erwin and B. Nadgorny: Phys. Status Solidi B Vol. 242 (2005), p. R67.

[5] S. Picozzi, A. Continenza and A.J. Freeman: Phys. Rev. B Vol. 70 (2004), p.235205.

[6] C. Hirai, H. Sato, A. Kimura, K. Yaji, K. Iori, M. Taniguchi, K. Hiraoka, T. Muro and A. Tanaka: Physica B Vol. 351 (2004), p.341.

[7] E. Sawatzky: J. Appl. Phys, Vol. 42 (1971), p.1706.

[8] S. Olive-Mendez, A. Spiesser, L.A. Michez, V. Le Thanh, A. Glachant, J. Derrien, T. Devillers, A. Barski and M. Jamet, Thin Solid Films Vol. 517 (2008), p.191.

DOI: https://doi.org/10.1016/j.tsf.2008.08.090

[9] X. Jiang, R. Wang, R.M. Shelby, R.M. Macfarlane, S.R. Bank, J.S. Harris and S.S.P. Parkin: Phys. Rev. Lett. Vol. 94 (2005), p.056601.

[10] A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou: Appl. Phys. Lett. Vol. 80 (2003), p.1240.

[11] C.H. Li, G. Kioseoglou, O.M.J. van't Erve, A.T. Hanbicki, B.T. Jonker, R. Mallory, M. Yasar and A. Petrou: Appl. Phys. Lett. Vol. 85 (2004), p.1544.

DOI: https://doi.org/10.1063/1.1810534

[12] C. Zeng, S.C. Erwin, L.C. Feldman, A.P. Li, R. Jin, Y. Song, J.R. Thompson and H.H. Weitering: Appl. Phys. Lett. Vol. 83 (2003), p.5002.

[13] P. Gas, C. Girardeaux, D. Mangelinck and A. Portavoce: Mater. Sci. Eng. B Vol. 101 (2003), p.43.

[14] A. Spiesser, S.F. Olive-Mendez, M. -T. Dau, L.A. Michez, A. Watanabe, V. Le Thanh, A. Glachant, J. Derrien, A. Barski and M. Jamet: Thin Solid Films Vol. 518 (2010), p. S113.

DOI: https://doi.org/10.1016/j.tsf.2009.10.067

[15] L. Sangaletti, D. Ghidoni, S. Pagliara, A. Goldoni, A. Morgante, L. Floreano, A. Cossaro, M. C. Mozzati, and C. B. Azzoni, Phys. Rev. B 72 (2005), p.035434.

DOI: https://doi.org/10.1103/physrevb.72.035434

[16] M. Wittmer, M. -A. Nicolet and J.W. Mayer: Thin Solid Films Vol. 42 (1977), p.51.