Effect of Mn Thickness on the Mn-Ge Phase Formation during Reactions of 50 nm and 210 nm Thick Mn Films Deposited on Ge (111) Substrate


Article Preview

An alternative solution for producing logic devices in microelectronics is spintronics (SPIN TRansport electrONICS). It relies on the fact that in a magnetic layer, the electrical current can be spin polarized. To fabricate such components, a material whose electronic properties depend on its magnetic state is needed. The Mn-Ge system presents a lot of phases with different magnetic properties, which can be used for spintronics. The most interesting phase among the Mn-Ge system is Mn5Ge3 because of its stability at high temperatures, its Curie temperature which is close to room temperature and its ability of injecting spin-polarized electrons into semiconductors. In this paper, we have combined Reflection High-Energy Electron Diffraction (RHEED) and X-ray Diffraction (XRD), to study the sequence of formation of MnxGey phases during reactive diffusion of both a 50 nm and a 210 nm thick Mn films deposited by Molecular-Beam Epitaxy (MBE) on Ge (111).



Defect and Diffusion Forum (Volumes 323-325)

Edited by:

I. Bezverkhyy, S. Chevalier and O. Politano




O. Abbes et al., "Effect of Mn Thickness on the Mn-Ge Phase Formation during Reactions of 50 nm and 210 nm Thick Mn Films Deposited on Ge (111) Substrate", Defect and Diffusion Forum, Vols. 323-325, pp. 439-444, 2012

Online since:

April 2012




[1] G. Schmidt, R. Fiederling, M. Keim, G. Reuscher, T. Gruber, W. Ossau, A. Waag, and L. W. Molenkamp: Superlattices Microstruct. Vol. 27 (2000), p.297.

DOI: https://doi.org/10.1006/spmi.2000.0830

[2] Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno and D.D. Awschalom: Nature (London) Vol. 402 (1999), p.790.

DOI: https://doi.org/10.1038/45509

[3] N. Pinto, L. Morresi, R. Gunnella, R. Murri, F. D'Orazio, F. Lucari, S. Santucci, P. Picozzi, M. Passacantando and A. Verna Journal of Materials Science: Materials in Electronics 14, no. 5-7, (2003), p.337.

DOI: https://doi.org/10.1016/s0304-8853(03)00041-6

[4] R.P. Panguluri, C. Zeng, H.H. Weitering, J.M. Sullivan, S.C. Erwin and B. Nadgorny: Phys. Status Solidi B Vol. 242 (2005), p. R67.

[5] S. Picozzi, A. Continenza and A.J. Freeman: Phys. Rev. B Vol. 70 (2004), p.235205.

[6] C. Hirai, H. Sato, A. Kimura, K. Yaji, K. Iori, M. Taniguchi, K. Hiraoka, T. Muro and A. Tanaka: Physica B Vol. 351 (2004), p.341.

[7] E. Sawatzky: J. Appl. Phys, Vol. 42 (1971), p.1706.

[8] S. Olive-Mendez, A. Spiesser, L.A. Michez, V. Le Thanh, A. Glachant, J. Derrien, T. Devillers, A. Barski and M. Jamet, Thin Solid Films Vol. 517 (2008), p.191.

DOI: https://doi.org/10.1016/j.tsf.2008.08.090

[9] X. Jiang, R. Wang, R.M. Shelby, R.M. Macfarlane, S.R. Bank, J.S. Harris and S.S.P. Parkin: Phys. Rev. Lett. Vol. 94 (2005), p.056601.

[10] A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou: Appl. Phys. Lett. Vol. 80 (2003), p.1240.

[11] C.H. Li, G. Kioseoglou, O.M.J. van't Erve, A.T. Hanbicki, B.T. Jonker, R. Mallory, M. Yasar and A. Petrou: Appl. Phys. Lett. Vol. 85 (2004), p.1544.

DOI: https://doi.org/10.1063/1.1810534

[12] C. Zeng, S.C. Erwin, L.C. Feldman, A.P. Li, R. Jin, Y. Song, J.R. Thompson and H.H. Weitering: Appl. Phys. Lett. Vol. 83 (2003), p.5002.

[13] P. Gas, C. Girardeaux, D. Mangelinck and A. Portavoce: Mater. Sci. Eng. B Vol. 101 (2003), p.43.

[14] A. Spiesser, S.F. Olive-Mendez, M. -T. Dau, L.A. Michez, A. Watanabe, V. Le Thanh, A. Glachant, J. Derrien, A. Barski and M. Jamet: Thin Solid Films Vol. 518 (2010), p. S113.

DOI: https://doi.org/10.1016/j.tsf.2009.10.067

[15] L. Sangaletti, D. Ghidoni, S. Pagliara, A. Goldoni, A. Morgante, L. Floreano, A. Cossaro, M. C. Mozzati, and C. B. Azzoni, Phys. Rev. B 72 (2005), p.035434.

DOI: https://doi.org/10.1103/physrevb.72.035434

[16] M. Wittmer, M. -A. Nicolet and J.W. Mayer: Thin Solid Films Vol. 42 (1977), p.51.