Fluoride Influence on the Properties of Oxide Layer Produced by Plasma Electrolytic Oxidation

Abstract:

Article Preview

Plasma Electrolytic Oxidation (PEO) is a powerful technique allowing hardening and corrosion protection of valve metals due to formation of an oxide layer on the metal surface. The addition of fluoride ions to the alkaline electrolyte for the PEO processing of aluminum and magnesium alloys produces significant changes in the structure and properties of the coating [1-, however the mechanism of these changes is not clear. A study of the influence of the fluoride concentration on the composition, structure and morphology of thin (to 20 µm) PEO layers was performed. The oxide layer thickness on aluminum is significantly smaller than that on magnesium. Fluorine is detected as an amorphous phase in the vicinity of the base metal.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Edited by:

Prof. Andreas Öchsner, Prof. Graeme E. Murch, Ali Shokuhfar and Prof. João M.P.Q. Delgado

Pages:

498-503

Citation:

B. Kazanski et al., "Fluoride Influence on the Properties of Oxide Layer Produced by Plasma Electrolytic Oxidation", Defect and Diffusion Forum, Vols. 326-328, pp. 498-503, 2012

Online since:

April 2012

Export:

Price:

$38.00

[1] Z. Wang, L. Wu, W. Cai, A. Shan, Z. Jiang: Journal of Alloys and Compounds Vol. 505 (2010), p.188.

[2] K. Wang, B. -H. Koo, C. -G. Lee, Y. -J. Kim, S. -H. Lee, Eungsun Byuon: Trans. Nonferrous Met. Soc. China Vol. 19 (2009), p.866.

[3] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebrukhov, P.S. Gordienko, S. Iwatsubo, A. Matsui: Surface and Coatings Technology Vol. 145 (2001), p.146.

DOI: https://doi.org/10.1016/s0257-8972(01)01307-x

[4] R.C. Barik, J.A. Wharton, T, R.J.K. Wood, K.R. Stokes, R.L. Jones: Surface & Coatings Technology Vol. 199 (2005), p.158.

[5] W. Xue, X. Shi, M. Hua, Y. Li: Applied Surface Science Vol. 253 (2007), p.6118.

[6] HongfeiGuo, MaozhongAn, ShenXu, HuibinHuo: Materials Letters Vol. 60 (2006), p.1538.

[7] F. Chen, H. Zhou, B. Yao, Z. Qin, Q. Zhang: Surface & Coatings Technology Vol. 201 (2007), p.4905.

[8] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey: Surface and Coatings Technology Vol. 122 (1999), p.73.

DOI: https://doi.org/10.1016/s0257-8972(99)00441-7

[9] J. Liang, B. Guo, J.T. Huiwen Liu, J. Zhou, T. Xu: Applied Surface Science Vol. 252 (2005), p.345.

[10] S.V. Gnedenkov, O.A. Khrisanfov, A.G. Zavidnaya, S.L. Sinebrukhov A.N. Kovryanov, T.M. Scorobogatova, P.S. Gordienko: Surface and Coatings Technology Vol. 123 (2000), p.24.

DOI: https://doi.org/10.1016/s0257-8972(99)00421-1

[11] Information on http: /web. mit. edu/2. 813/www/readings/Ellingham_diagrams. pdf.

[12] A. E. Yaniv and H. Schick: Plating Vol. 58(1968), p.1295.

[13] M. Takaya: Aluminum Vol. 65 (1989), p.1244.

[14] C.S. Lin, Y.C. Fu: J. Electrochem. Soc. Vol. 153 (10) (2006), p. B417.