Characterization of H-Plasma Treated ZnO Crystals by Positron Annihilation and Atomic Force Microscopy

Abstract:

Article Preview

Nominally undoped, hydrothermally grown ZnO single crystals have been investigated before and after exposure to remote H-plasma. Defect characterization has been made by two complementary techniques of positron annihilation: positron lifetime spectroscopy and coincidence Doppler broadening. The high-momentum parts of the annihilation photon momentum distribution have been calculated from first principles in order to assist in defect identification. The positron annihilation results are supplemented by Atomic Force Microscopy for characterization of the crystal surface. It was found that virgin ZnO crystal contains Zn-vacancies associated with hydrogen. H-plasma treatment causes a significant reduction in concentration of these complexes. Physical mechanism of this effect is discussed in the paper.

Info:

Periodical:

Edited by:

B.N. Ganguly and G. Brauer

Pages:

113-125

Citation:

J. Čížek et al., "Characterization of H-Plasma Treated ZnO Crystals by Positron Annihilation and Atomic Force Microscopy", Defect and Diffusion Forum, Vol. 331, pp. 113-125, 2012

Online since:

September 2012

Export:

Price:

$38.00

[1] G. Brauer, W. Anwand, D. Grambole, J. Grenzer, W. Skorupa, J. Čížek, J. Kuriplach, I. Procházka, C.C. Ling, C.K. So, D. Schulz, D. Klimm, Phys. Rev. B 79 (2009) 115212.

DOI: https://doi.org/10.1103/physrevb.79.115212

[2] Z.Q. Chen, S.J. Wang, M. Maekawa, A. Kawasuso, H. Naramoto, X.L. Yuan, T. Sekiguchi, Phys. Rev. B 75 (2007) 245206.

[3] F. Tuomisto, D.C. Look, Proc SPIE 6474 (2007) 647413.

[4] C.G. Van de Walle, Phys. Rev. Lett. 85 (2000) 1012.

[5] A. Janotti, C.G. Van de Walle, Nature Mater. 6 (2007) 44.

[6] W. Anwand, G. Brauer, T.E. Cowan, D. Grambole, W. Skorupa, J. Čížek, J. Kuriplach, I. Procházka I, W. Egger, P. Sperr Phys. Status Solidi A 207 (2010) 2415.

DOI: https://doi.org/10.1002/pssa.200925609

[7] W. Anwand, G. Brauer, T.E. Cowan, V. Heera, H. Schmidt, W. Skorupa, H. von Wenckstern, M. Brandt, G. Benndorf, M. Grundmann Phys. Status Solidi A 207 (2010) 2426.

DOI: https://doi.org/10.1002/pssa.201026311

[8] W.A. Lanford, Handbook of Modern Ion Beam Materials Analysis, ed. R. Tesmer, M. Nastasi, Materials Research Society, Pittsburg, (1995).

[9] J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, Pergamon, New York (1985).

[10] F. Bečvář, J. Čížek, I. Procházka, J. Janotová, Nucl. Instrum. Methods A 539 (2005) 372.

[11] F. Bečvář, J. Čížek, I. Procházka, Appl. Surf. Sci. 255 (2008) 111.

[12] F. Bečvář, Nucl. Instrum. Methods B 261 (2007) 871.

[13] I. Procházka, I. Novotný, F. Bečvář Mater. Sci. Forum 255-257 (1997) 772.

[14] J. Čížek, I. Procházka, B. Smola, I. Stulíková, R. Kužel, Z. Matěj, V. Cherkaska, Phys. Stat. Sol. a 203 (2006) 466.

[15] M.J. Puska, R.M. Nieminen, J. Phys. F: Met. Phys. 13 (1983) 333.

[16] B. Barbiellini, M.J. Puska, T. Korhonen, A. Harju, T. Torsti, R.M. Nieminen, Phys. Rev. B 53 (1996) 16201.

[17] I. Makkonen, M. Hakala, M.J. Puska, Phys. Rev. B 73 (2006) 035103.

[18] J. Kuriplach, A.L. Morales, C. Dauwe, D. Segers, M. Šob, Phys. Rev. B 58 (1998) 10475.

[19] M. Mizuno, H. Araki, Y. Shirai, Mater. Trans. 45 (2004) (1964).

[20] R.N. West, in: P. Hautojärvi (Ed. ), Positrons in Solids, Springer-Verlag, Berlin, 1979, p.89.

[21] G. Brauer, W. Anwand, W. Skorupa, J. Kuriplach, O. Melikhova, C. Moisson, H. von Wenckstern, H. Schmidt, M. Lorenz, M. Grundmann, Phys. Rev. B 74 (2006) 045208.

DOI: https://doi.org/10.1103/physrevb.74.045208

[22] W. Anwand, G. Brauer, R.I. Grynszpan, T.E. Cowan, D. Schulz, D. Klimm, J. Čížek, J. Kuriplach, I. Procházka, C.C. Ling, A.B. Djurišić, V. Klemm, G. Schreiber, D. Rafaja, J. Appl. Phys. 109 (2011) 063516.

DOI: https://doi.org/10.1063/1.3559264

[23] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors – Defect Studies, Springer, Berlin (1999).

DOI: https://doi.org/10.1007/978-3-662-03893-2_4

[24] A. Uedono, T. Koida, A. Tsukazaki, M. Kawasaki, Z.Q. Chen, S. Chichibu, H. Koinuma, J. Appl. Phys. 93 (2003) 2481.

[25] T. Koida, S.F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, Appl. Phys. Lett. 82 (2003) 532.

DOI: https://doi.org/10.1063/1.1540220

[26] A. Zubiaga, F. Tuomisto, F. Plazaola, K. Saarinen, J.A. Garcia, J.F. Rommeluere, J. Zuniga-Perez, V. Munoz-Sanjose, Appl. Phys. Lett. 86 (2005) 042103.

DOI: https://doi.org/10.1063/1.1855412

[27] K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurisic, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, L. Ding, W.K. Ge, J. Phys. Chem. B 110 (2006) 20865.

[28] B. Nielsen, K. G. Lynn, A. Vehanen, P. J. Schultz, Phys. Rev. B 32 (1985) 7561.

[29] A. Uedono, L. Wei, Y. Tabuki, H. Kondo, S. Tanigawa, K. Wada, H. Nakanishi, Jpn. J. Appl. Phys., Part 2 30 (1991) L2002.

DOI: https://doi.org/10.1143/jjap.30.l2002

[30] R.A. Rabadanov, M.K. Guseikhanov, I. Sh. Aliev, S.A. Semilov, Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika 6 (1981) 72.

[31] N. Tomiyama, M. Takenaka, E. Kuramoto, Mater. Sci. Forum 105-110 (1992) 1281.

[32] S. Zh. Karazhanov, E.S. Marstein, A. Holt J. Appl. Phys. 105 (2009) 033712.

[33] J. Čížek, N. Žaludová, M. Vlach, S. Daniš, J. Kuriplach, I. Procházka, G. Brauer, W. Anwand, D. Grambole, W. Skorupa, R. Gemma, R. Kirchheim, A. Pundt, J. Appl. Phys. 103 (2008) 053508.

DOI: https://doi.org/10.1063/1.2844479