Design and Construction of a Slow Positron Beam for Solid and Surface Investigations

Abstract:

Article Preview

On the basis of the design and construction of the slow positron beam SPONSOR at the Helmholtz-Centre Dresden-Rossendorf an example is given how to build-up a simple slow positron beam for solid surface investigations within a short time and without high financial costs. The system uses a 22Na source and consists of three main parts: (1) the source chamber with a thin film tungsten moderator used in transmission, and a pre-accelerator stage, (2) the vacuum system with magnetic transport, a bent tube for energy selection and an accelerator, (3) the sample chamber with a sample holder, Ge detectors and (4) facilities for remote control and data acquisition. These parts are described in detail. The paper is preferentially addressed to beginners in the field of slow positron beam techniques and other readers being generally interested in positron annihilation spectroscopy.

Info:

Periodical:

Edited by:

B.N. Ganguly and G. Brauer

Pages:

25-40

Citation:

W. Anwand et al., "Design and Construction of a Slow Positron Beam for Solid and Surface Investigations", Defect and Diffusion Forum, Vol. 331, pp. 25-40, 2012

Online since:

September 2012

Export:

Price:

$38.00

[1] P.G. Coleman (Ed. ), Positron Beams and their applications, World Scientific, Singapore, (2000).

[2] W. Anwand, H. -R. Kissener, G. Brauer, A magnetically guided slow positron beam for defect studies Acta Physica Polonica A 88 (1995) 7-11.

DOI: https://doi.org/10.12693/aphyspola.88.7

[3] N.B. Chilton, P.G. Coleman, A computer-controlled system for slow positron implantation spectroscopy, Meas. Sci. Technol. 6 (1995) 53-59.

DOI: https://doi.org/10.1088/0957-0233/6/1/010

[4] R.I. Grynszpan, W. Anwand, G. Brauer, P.G. Coleman, Positron depth profiling in solid surface layers, Ann. Chim. Sc. Mat. 32 (2007) 365-382.

DOI: https://doi.org/10.3166/acsm.32.365-382

[5] Information on http: /www. simion. com.

[6] Information on http: /positron. physik. uni-halle. de.

[7] W. Skorupa, W. Anwand, D. Panknin, M. Voelskow, R.A. Yankov, T. Gebel, Advanced thermal processing of materials in the msec range, Vacuum 78 (2005) 673-677.

DOI: https://doi.org/10.1016/j.vacuum.2005.01.105

[8] K. Potzger, W. Anwand, H. Reuther, S. Zhou, G. Talut, G. Brauer, W. Skorupa, J. Fassbender, The effect of flash lamp annealing on Fe implanted ZnO single crystals, J. Appl. Phys. 101 (2007) art. 033906 (4 pp).

DOI: https://doi.org/10.1063/1.2427103

[9] W. Anwand, S.Z. Xiong, C.Y. Wu, T. Gebel, Th. Schumann, G. Brauer, W. Skorupa, Structural changes in flash lamp annealed amorphous Si layers probed by slow positron implantation spectroscopy, Acta Phys. Polonica A 113 (2008) 1273-1278.

DOI: https://doi.org/10.12693/aphyspola.113.1273

[10] A. Dupasquier and A.P. Mills, Jr . (Eds. ), Positron Spectroscopy of Solids, IOS, Amsterdam, (1995).

[11] R. Krause-Rehberg and H.S. Leipner (Eds. ), Positron Annihilation in Semiconductors – Defect Studies, Springer, Berlin, (1999).

DOI: https://doi.org/10.1007/978-3-662-03893-2_4

[12] W. Anwand G. Brauer, W. Skorupa, Evolution of ion implantation-caused vacancy-type defects in 6H-SiC probed by slow positron implantation spectroscopy, Appl. Surf. Sci. 184 (2001) 247-251.

DOI: https://doi.org/10.1016/s0169-4332(01)00496-2

[13] A. van Veen, H. Schut, J. de Vries, R.A. Haakvoort, M.R. Ijpma, Positron beams for solids and surfaces, in: P.J. Schultz, G.R. Massoumi, P.J. Simpson (Eds. ), Proceedings of the AIP Conference, Vol. 218 (1990) 171-177.

[14] W. Bauer-Kugelmann, P. Sperr, G. Kögel, W. Triftshäuser, Latest version of the Munich pulsed low energy positron system, Mater. Sci. Forum 363-365 (2001) 529-531.

DOI: https://doi.org/10.4028/www.scientific.net/msf.363-365.529

[15] G. Brauer, W. Anwand, P.G. Coleman, A.P. Knights, F. Plazaola, Y. Pacaud, W. Skorupa, J. Störmer, P. Willutzki, Positron studies of defects in ion implanted SiC, Phys. Rev. B54 (1996) 3084-3092.

DOI: https://doi.org/10.1103/physrevb.54.3084

[16] G. Brauer, W. Anwand, P.G. Coleman, J. Störmer, F. Plazaola, J.M. Campillo, Y. Pacaud, W. Skorupa, Post-implantation annealing of SiC studied by slow positron spectroscopies J. Phys.: Condens. Matter 10 (1998) 1147-1156.

DOI: https://doi.org/10.1088/0953-8984/10/5/022

[17] W. Anwand, G. Brauer, W. Skorupa, Vacancy-type defects in 6H-SiC caused by N+ and Al+ high fluence co-implantation, Appl. Surf. Sci. 194 (2002) 131-135.

DOI: https://doi.org/10.1016/s0169-4332(02)00112-5

[18] M. Clement, J.M.M. De Nijs, A. van Veen, H. Schut, P. Balk, Effect of post oxidation anneal on VUV radiation-hardness of the Si/SiO2 system studied by positron annihilation spectroscopy, IEEE Trans. Nucl. Sci. 42 (1995) 1717-1724.

DOI: https://doi.org/10.1109/23.488770

[19] M. Clement, J.M.M. De Nijs, P. Balk, H. Schut, A. van Veen, Analysis of positron beam data by the combined use of the shape- and wing-parameters, J. Appl. Phys 79 (1996) 9029-9036.

DOI: https://doi.org/10.1063/1.362635

[20] G. Brauer, W. Anwand, W. Skorupa, A. Revesz, J. Kuriplach, Characterization of the SiO2/Si interface by positron annihilation spectroscopy, Phys. Rev. B 66 (2002) art. 195331 (10 pp).

DOI: https://doi.org/10.1103/physrevb.66.195331

[21] J. Cizek, I. Prochazka, J. Kuriplach, W. Anwand, G. Brauer, T.E. Cowan, D. Grambole, H. Schmidt, W. Skorupa, Characterization of H-plasma treated ZnO crystals by positron annihilation and atomic force microscopy (see article in this book).

DOI: https://doi.org/10.4028/www.scientific.net/ddf.331.113