Positron Annihilation Spectroscopy: A Prelude to Modern Aspects


Article Preview

This article deals with the insight of using the positron (the simplest antimatter) as an entity that non-destructively probes material structure to the extent of atomic size defects, also describes the tools that have been in practice in recent times and in the front line activities. It also guides the reader on the use of (monoenergetic) slow positron beams that are currently available to study surface/ near surface structural details of various advanced materials. In addition, the bound state of electron and positron (positronium) is touched upon along with various conjectures for harnessing such species and utility of such light quasi-stationary states have been included. A brief mention has been made on the application of positrons towards medical diagnostic aspects and its recent importance in an astrophysical context.



Edited by:

B.N. Ganguly and G. Brauer




B. N. Ganguly, "Positron Annihilation Spectroscopy: A Prelude to Modern Aspects", Defect and Diffusion Forum, Vol. 331, pp. 7-21, 2012

Online since:

September 2012




[1] P.A.M. Dirac, On the annihilation of electrons and protons, Math. Proc. Cambridge Philos. Soc. 26 (1930) 361 -375.

[2] C.D. Anderson, The Apparent Existence of Easily Deflectable Positives, Science 76 (1932) 238- 239.

DOI: https://doi.org/10.1126/science.76.1967.238

[3] P.M.S. Blackett, G.P.S. Occhialini, Some photographs of the tracks of penetrating radiations, Proc. R. Soc. London, Sec. A 139 (1933) 699-726.

[4] O. Klemperer, On the annihilation radiation of the positron, Math. Proc. Cambridge Philos. Soc. 30 (1934) 347-354.

[5] D.C. Lauritsen, J.R. Oppenheimer, On the scattering of C11 g rays, Phys. Rev. 46 (1934) 80-81. R.F. Feynman, Quantum electrodynamics, Benjamin/Cummings, Reading, (1982).

[6] D.M. Schrader, Y.C. Jean (Eds. ), Positron and positronium chemistry, Elsevier, Amsterdam, (1988).

[7] R. Krause-Rehberg, H.S. Leipner (Eds. ), Positron annihilation in semiconductors – defect studies, Springer, Berlin, (1999).

DOI: https://doi.org/10.1007/978-3-662-03893-2_4

[8] A.T. Stewart, L.O. Roellig (Eds. ), Positron annihilation, Academic Press, New York, (1965).

[9] Information on http: /www. positronannihilation. net , also Y. Kobayashi, (see article in this volume).

[10] H. Saito, Y. Nagashima, T. Kurihara, T. Hyodo, A new lifetime spectrometer using a fast digital oscilloscope and BaF2 scintillators, Nucl. Instrum. Meth. A 487 (2002) 612-617.

DOI: https://doi.org/10.1016/s0168-9002(01)02172-6

[11] F. Becvar, J. Cizek, I. Prochazka, J. Janotova, The asset of ultra fast digitizers for positron lifetime spectroscopy, Nucl. Instrum. Meth. A 539 (2005) 372-385.

DOI: https://doi.org/10.1016/j.nima.2004.09.031

[12] K.G. Lynn, J.R. MacDonald, R.A. Boie, L.C. Feldman, J.D. Gabbe, M.F. Robbins, E. Bonderup, J. Golovchenko, Positron-annihilation momentum profiles in aluminum: core contribution and the independent-particle model, Phys. Rev. Lett. 38 (1977).

DOI: https://doi.org/10.1103/physrevlett.38.241

[13] A. Somoza, M.P. Petkov, K.G. Lynn, A. Dupasquier, Stability of vacancies during solute clustering in Al-Cu-based alloys, Phys. Rev. B 65(2002) 094107 (6 pp).

DOI: https://doi.org/10.1103/physrevb.65.094107

[14] M. Stadlbauer, C. Hugenschmidt, K Schreckenbach, P. Böni, Investigation of the chemical vicinity of crystal defects in ion-irradiated Mg and a Mg-Al-Zn alloy with coincident Doppler broadening spectroscopy, Phys. Rev. B 76 (2007), 174104 (8 pp).

DOI: https://doi.org/10.1103/physrevb.76.174104

[15] J. Čižek, M. Vlcek, I. Procházka, Digital spectrometer for coincidence measurement of Doppler broadening of positron annihilation radiation, Nucl. Instrum. Meth. A 623 (2010) 982- 994.

DOI: https://doi.org/10.1016/j.nima.2010.07.046

[16] R.N. West, Positron studies of the electronic structure of solids, in: A Dupasquier, A.P. Mills jr. (Eds. ), Positron spectroscopy of solids, IOS Press, Amsterdam, 1995, pp.75-143.

[17] P. Sen, Recent advancements in positron lifetime instrumentations, in: Y.C. Jean (Ed. ), Proc. Third International Workshop on Positron and Positronium Chemistry, World Scientific, Singapore, 1990, pp.109-135.

[18] H. Stoll, M. Koch, K. Maier, J. Major , Positron age-momentum correlation studies of defects and positronium by MeV positron beam, Nucl. Instrum. Meth. B 56-57 (1991) 582-585.

DOI: https://doi.org/10.1016/0168-583x(91)96101-p

[19] I.K. MacKenzie, B.T.A. McKee, A two-parameter measurement of the correlation of positron age with the momentum of the annihilating positron-electron pair, Appl. Phys. 10 (1976) 245-249.

DOI: https://doi.org/10.1007/bf00897223

[20] P. Castellaz, A. Siegle, H. Stoll, Positron age-momentum correlation (AMOC) measurements on organic liquids, J. Nucl. Radiochem. Sci. 3 ( 2002) R1-R7.

DOI: https://doi.org/10.14494/jnrs2000.3.2_r1

[21] T. Hyodo, Positronium spectroscopies for the study of the surface of fine particles, in: A Dupasquier, A.P. Mills jr. (Eds. ), Positron spectroscopy of solids, IOS, Amsterdam, 1995, pp.419-439.

[22] T. Hirade , Positronium formation in the room temperature ionic liquids, Mat Sci. Forum 607 (2009) 232 – 234.

DOI: https://doi.org/10.4028/www.scientific.net/msf.607.232

[23] P.G. Coleman (Ed. ), Positron Beams and their applications, World Scientific, Singapore, (2000).

[24] Y.C. Jean, P.E. Mallon, D.M. Schrader, Principles and applications of positron and positronium chemistry, World Scientific, Singapore, (2003).

[25] J. Lahtinen, A, Vehanen, H. Huomo, J. Mäkinen, P. Huttunen, K. Rytsolä, M. Bentzon, P. Hautojärvi, High intensity variable-energy positron beam for surface and near-surface studies Nucl. Instrum. Meth. B 17 (1986) 73-80.

DOI: https://doi.org/10.1016/0168-583x(86)90455-6

[26] D.B. Cassidy, S.H.M. Deng, R.G. Greaves, A.P. Mills, jr., Accumulator for the production of intense positron pulses, Rev. Sci. Instrum. 77 (2006) 073106 (8 pp).

DOI: https://doi.org/10.1063/1.2221509

[27] T. Kurihara, A. Yagishita, A. Enomoto, H. Kobayashi, T. Shidara, A. Shirakawa, K. Nakahara, H. Saito, K. Inoue, Y. Nagashima, T. Hyodo, Y. Nagai, M. Hasegawa, Y. Inoue, Y. Kogure, M. Doyama, Intense positron beam at KEK, Nucl. Instrum. Meth. B. 171 (2000).

DOI: https://doi.org/10.1016/s0168-583x(00)00074-4

[28] R. Krause-Rehberg, M. Jungmann, A. Krille, B. Werlich, A. Pohl, W. Anwand, G. Brauer, M. Butterling, H. Büttig, K.M. Kosev, J. Teichert, A. Wagner, T.E. Cowan, Use of superconducting linacs for positron generation: the EPOS system at the Forschungszentrum Dresden-Rossendorf (FZD), J. Phys.: Conf. Ser. 262 (2011).

DOI: https://doi.org/10.1088/1742-6596/262/1/012003

[29] K.G. Lynn, A.P. Mills, jr., L.O. Roellig, M. Weber, in: D.C. Lorents, W.E. Meyerhof, J.R. Peterson (Eds. ), Electronic and atomic collisions, Elsevier, Amsterdam, 1986, pp.227-232.

[30] C. Hugenschmidt, G. Kögel, R. Repper, K. Schreckenbach, P. Sperr, B. Straβer, W. Triftshäuser, Monoenergetic positron beam at the reactor based positron source at FRM-II, Nucl. Instrum. Meth. B 192 (2002) 97-101.

DOI: https://doi.org/10.1016/s0168-583x(02)00788-7

[31] A.I. Hawari, D.W. Gidley, J. Moxom, A.G. Hathaway, S. Mukherjee, Operation and testing of the PULSTAR reactor intense slow positron beam and PALS spectrometers, J. Phys.: Conf. Ser. 262 (2011) 012024 (4 pp).

DOI: https://doi.org/10.1088/1742-6596/262/1/012024

[32] H. Schut, A. van Veen, J. de Roode, F. Labohm, Long term performance of the reactor based positron beam, Mat. Sci. Forum 445-446 (2004) 507-509.

DOI: https://doi.org/10.4028/www.scientific.net/msf.445-446.507

[33] G.R. Massoumi, N. Hozhabri, W.N. Lennard, P.J. Schultz, S.F. Baert, H.H. Jorch, A.H. Weiss, Rare gas moderated electrostatic positron beam, Rev. Sci. Instrum. 62 (1991) 1460 -1463.

DOI: https://doi.org/10.1063/1.1142467

[34] P. Perez , L. Liszkay, J-M Rey, V. Blideanu, M. Carty, A. Curtoni, O. Delferrierre, P. Dupre, T. Muranaka, N. Ruiz andY. Sacquin, A mini Linac based positron source, Phys. Status Solidi C 6 (2009).

DOI: https://doi.org/10.1002/pssc.200982123

[35] S. Mohorovicic, Möglichkeit neuer Elemente und ihre Bedeutung für die Astrophysik, Astron. Nachr. 253 (1934) 93-108.

DOI: https://doi.org/10.1002/asna.19342530402

[36] J. Pirenne, Ph.D. Thesis, University of Paris (1944). J. Pirenne, Le Champ Propre et l'Interaction des Particules de Dirac' suivant l'electrodynamique quantique, Arch. Sci. Phys. Nat. 28 (1946) 233 -272.

[37] J.A. Wheeler, Polyelectrons, Ann. N .Y. Acad. Sci. 48 (1946) 219-238.

[38] A.E. Ruark, Positronium, Phys. Rev. 68 (1945) 278.

[39] M. Deutsch, Evidence for the formation of positronium in gases, Phys Rev. 82 (1951) 455-456.

[40] A. Rich, Recent experimental advances in positronium research, Rev. Mod. Phys. 53 (1981) 127-165.

[41] A. Ore, Annihilation of positrons in gases, Årbok/Universitetet i Bergen. Naturvitenskapelig rekke 1949: 9, Bergen, (1950).

[42] O.E. Mogensen, Spur reaction model of positronium formation, J. Chem. Phys. 60 (1974) 998- 1004.

[43] V.M. Byakov, V.I. Goldanskii, V. P Shantarovich, About the possible role of dry, electrons in positronium formation in a liquid, Dokl. Akad. Nauk SSSR 219 (1974) 633-636.

[44] W. Brandt, S. Berko, W.W. Walker, Positronium Decay in Molecular Substances, Phys. Rev. 120 (1960) 1289-1295.

DOI: https://doi.org/10.1103/physrev.120.1289

[45] R.A. Ferrell, Long Lifetime of Positronium in Liquid Helium, Phys. Rev. 108 (1957) 167-168.

DOI: https://doi.org/10.1103/physrev.108.167

[46] D. Gangopadhyay, Positronium annihilation in molecular liquids, PhD Thesis, Jadavpur University, Kolkata, 2002. D. Dutta, B.N. Ganguly, D. Gangopadhyay, T. Mukherjee, B. Dutta-Roy, Curvature Dependent surface tension of liquids studied by positronium annihilation, J. Surface Sci. Technol. 18 (2002).

DOI: https://doi.org/10.1103/physrevb.65.094114

[47] K.F. Canter, A.P. Mills, jr., S. Berko, Efficient positronium formation by slow positrons incident on solid targets, Phys. Rev. Lett. 33 (1974) 7-10.

DOI: https://doi.org/10.1103/physrevlett.33.7

[48] A.P. Mills, jr., E. D. Shaw, M. Leventhal, P. M. Platzman, R. J. Chichester, D. M. Zuckerman, T. Martin, R. Bruinsma, R. R. Lee, Evidence for the quantum sticking of slow positronium, Phys. Rev. Lett. 66 (1991) 735-738.

DOI: https://doi.org/10.1103/physrevlett.66.735

[49] Y. Nagashima, T. Hakodate, A. Miyamoto, K. Michishio, H. Terabe, Emission of positronium negative ions from Cs deposited W(100) and polycrystalline Fe surfaces, Phys. Status Solidi C 6 (2009) 2253-2600.

DOI: https://doi.org/10.1002/pssc.200982098

[50] D.B. Cassidy, A.P. Mills, jr, Production of molecular positronium, Nature Lett. 449 (2007) 195-197.

[51] D.M. Schrader, Symmetry of Dipositronium, Phys. Rev. Lett. 92 (2004) 043401-043404.

[52] H. Ray, Recent interests on positron (e+), positronium (Ps) and antihydrogen, Natural Sci. 3 (2011) 42-47.

[53] S.K. Adhikari, Positronium interaction and its Bose–Einstein condensation, Phys. Status Solidi C 6 (2009) 2272-2276.

DOI: https://doi.org/10.1002/pssc.200982066

[54] L. Liszkay, Positronium for antihydrogen production, in: Physics with many positrons, A. Dupasquier, A.P. Mills, jr, R.S. Brusa (Eds. ), IOS, Amsterdam, 2010, pp.297-310.

[55] D. Dutta, Positron annihilation studies in molecular substances with special reference to porous materials, PhD Thesis, Jadavpur University, 2005. D. Dutta, B.N. Ganguly, S. Chatterjee, T. Mukherjee, Effect of temperature on positronium annihilation in silica gel., J. Phys. Chem. B 109, (2005).

DOI: https://doi.org/10.1021/jp050380g

[56] D. Dutta, P.K. Pujari, K. Sudarshan, S.K. Sharma, Effect of confinement on the phase transition of benzene in nanoporous silica: a positron annihilation study, J. Phys. Chem. C 112 (2008) 19055–19060.

DOI: https://doi.org/10.1021/jp805675y

[57] R. Suzuki, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, Y. Kobayashi, Positron lifetime study on porous silicon with a monoenergetic pulsed positron beam, Phys. Rev. B 49 (1994) 17484-17487.

DOI: https://doi.org/10.1103/physrevb.49.17484

[58] M. Khalid, P. Esquinazi, D. Spemann, W. Anwand, G. Brauer, Hydrogen mediated ferromagnetism in ZnO single crystals, New J. Phys. 13 (2011) 063017 (7 pp).

DOI: https://doi.org/10.1088/1367-2630/13/6/063017

[59] P.J. Schultz, K.G. Lynn, Interaction of positron beams with surfaces, thin films, and interfaces, Rev. Mod. Phys. 60 (1988) 701-779.

DOI: https://doi.org/10.1103/revmodphys.60.701

[60] A.P. Mills, jr., Positron and positronium emission spectroscopies, in: A. Dupasquier, A.P. Mills, jr. (Eds. ), Positron Spectroscopy of Solids, IOS, Amsterdam, 1995, pp.209-258.

[61] Y.C. Wu, A. Kallis, J. Jiang, P.G. Coleman, Structural and phase changes in amorphous solid water films revealed by positron beam spectroscopy, Phys. Rev. Lett. 105 (2010) 066103 (4pp).

DOI: https://doi.org/10.1103/physrevlett.105.066103

[62] Z. Chen, K. Yto, H. Yanagishita, N. Oshima, R. Suzuki, Y. Kobayashi, Correlation study between free-volume holes and molecular separations of composite membranes for reverse osmosis processes by means of variable-energy positron annihilation techniques, J. Phys. Chem. C 115 (2011).

DOI: https://doi.org/10.1021/jp203888m

[63] J.I. Feldblyum, M. Liu, D.W. Gidley, A.J. Matzger, Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1, J. Am. Chem. Soc. 133 (2011) 18257–18263.

DOI: https://doi.org/10.1021/ja2055935

[64] T. Marek, C. Szeles, K. Süvegh, E. Kiss, A. Vertes, K.G. Lynn, Characterization of arachidate Langmuir-Blodgett films by variable energy positron beams, Langmuir 15 (1999) 8189-8196.

DOI: https://doi.org/10.1021/la990109o

[65] Y.C. Jean, H. Chen, G. Liu, J.E. Gadzia, Life science research using positron annihilation spectroscopy: UV–irradiated mouse skin, Radiat. Phys. Chem. 76 (2007) 70-75.

DOI: https://doi.org/10.1016/j.radphyschem.2006.03.008

[66] R.I. Grynszpan, W. Anwand, G. Brauer, P.G. Coleman, Positron depth profiling in solid surface layers, Ann. Chim. Sci. Mat. 32 (2007) 365-382.

DOI: https://doi.org/10.3166/acsm.32.365-382

[67] A.H. Weiss, Positron Annihilation Induced Auger and Gamma Spectroscopy (invited lecture presentation, Abstract book) ICPA-15 SINP, KOLKATA, 2009. Also: http: /www. uta. edu/physics/main/faculty/weiss/psg/publications/index. html.

[68] M.K. Dey, R.K. Bhandari, Setting up a 30MeV high current cyclotron facility in Kolkata, Phys. Status Solidi C 6 (2009) 2376-2379.

DOI: https://doi.org/10.1002/pssc.200982067

[69] Positron emission tomography: basic sciences, D.L. Bailey, D.W. Townsend, P.E. Valk, M. N. Maisey (Eds. ), Springer, Berlin, (2005).

[70] B.N. Ganguly, N.N. Mondal, M. Nandy, F. Roesch , Some physical aspects of positron annihilation tomography: a critical review, J. Radioanal. Nucl. Chem. 279 (2009) 685-698.

DOI: https://doi.org/10.1007/s10967-007-7256-2

[71] PET Center, Department of Radiology, University of Pennsylvania, Philadelphia, USA. Information on www. radiochemistry. org/graduate_programs/usa/univ_penn. htm.

[72] PET Centre, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany. Information on http: /www. hzdr. de/db/Cms?pNid=270.

[73] Biomedical Engineering, University of California at Davis, Davis, USA. Emission tomography of PET and SPECT: Information on www. ncbi. nlm. nih. gov/pubmed/19646559 Emission Tomography.

[74] C. Grimani, S. A. Stephens7, F. S. Cafagna2, G. Basini6, R. Bellotti2, M. T. Brunetti1, M. Circella, A. Codino,C. De Marzo, M. P. De Pascale, N. Finetti1;, R. L. Golden, M. Hof, W. Menn, J. W. Mitchell,A. Morselli, J. F. Ormes, P. Papini, C. Pfeifer, S. Piccardi, P. Picozza, M. Ricci, M. Simon, P. Spillantini,S. J. Stochaj, and R. E. Streitmatter, Measurements of the absolute energy spectra of cosmic – ray positrons and electrons above 7GeV , Astronomy & Astrophysics 392 (2002).

DOI: https://doi.org/10.1051/0004-6361:20020845

[75] S. Coutu, S.W. Barwick, J. J. Beatty, A. Bhattacharyya, C. R. Bower, C. J. Chaput, G. A. de Nolfo, M. A. DuVernois, A. Labrador, S.P. McKee, D. Müller, J.A. Musser,S. L. Nutter, E. Schneider, S. P. Swordy, G. Tarlé, A.D. Tomasch, E. Torbet, Cosmic ray positrons: Are there primary sources? Astropart. Phys. 11(1999).

DOI: https://doi.org/10.1016/s0927-6505(99)00011-0

[76] Information on http: /www. astropositron. org/ and http: /www. cesr. fr/~pvb/astropositron/presentations_files/Mocchiutti. pdf.

[77] N. Prantzos, C. Boehm, A. M. Bykov, R. Diehl, K. Ferrie`re, N. Guessoum, P. Jean, J. Knoedlseder, A. Marcowith, I.V. Moskalenko, A. Strong, G. Weidenspointner The 511 keV emission from positron annihilation in the galaxy, Rev. Mod. Phys. 83 (2011).

DOI: https://doi.org/10.1103/revmodphys.83.1001