Investigations of HAVAR® Alloy Using Positrons

Abstract:

Article Preview

A study of irradiation-induced damage in HAVAR® foils was initiated in order to extract the highest proton dose the foils can sustain. The lattice structure of HAVAR® foils in different metallurgic conditions is presented, as well as visible internal structure, measured by Transmission Electron Microscopy (TEM). Positron Annihilation Spectroscopy (PAS) techniques were used to investigate these foils, and another foil that had been irradiated to the maximal proton dose limit, set by the manufacturer to a total charge of 1 mAh (= 3.6 C). PAS techniques included Doppler broadening (DB) measurement in the SPONSOR beam and lifetime (LT) measurements, both carried at Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Both positron spectroscopy methods show clear differences between the investigated foils, with distinguished characteristics for annealed, cold-rolled and irradiated foils. The advantages of using a slow positron beam to study thin foils and defect profiles, over a table-top LT spectrometer, are discussed and demonstrated by the HAVAR® measurements.

Info:

Periodical:

Edited by:

B.N. Ganguly and G. Brauer

Pages:

95-112

Citation:

S. M. T. Beck et al., "Investigations of HAVAR® Alloy Using Positrons", Defect and Diffusion Forum, Vol. 331, pp. 95-112, 2012

Online since:

September 2012

Export:

Price:

$38.00

[1] M. Robinson, HAVAR®, A Co-Cr biocompatible alloy for medical implants, in: B. Ilschner, E.J. Kramer, K.H.J. Buschow, M.C. Flemings, P. Veyssiere, R. Cahn, S. Mahajan (Eds. ), Encyclopedia of Materials: Science and Technology, Pergamon, Oxford, 2001, pp.1-6.

DOI: https://doi.org/10.1016/b0-08-043152-6/01865-9

[2] Directory of Cyclotrons used for Radionuclide Production in Member States, 2006 Update, IAEA, Vienna, IAEA-DCRP/2006, ISBN 92-0-111506-7 © IAEA, 2006, Printed by the IAEA in Austria, October (2006).

DOI: https://doi.org/10.1016/b978-075066723-4/50040-1

[3] I. Mardor, D. Berkovits, I. Gertz, A. Perry, J. Rodnizki, L. Weissman, K. Dunkel, F. Kremer, M. Pekeler, C. Piel, P. vom Stein, STATUS OF THE SARAF CW 40 MEV PROTON/DEUTERON ACCELERATOR, Proc. PAC09, Vancouver, BC, Canada (2009).

[4] S. May-Tal Beck, W. Anwand, A. Wagner, S. Haroush, Y. Eisen, A. Beck, A. Ocherashvili, O. Hen, D. Moreno, A comparative glance into the HAVAR® alloy by PAS and TEM methods, Physics Procedia (2012, in print).

DOI: https://doi.org/10.1016/j.phpro.2012.06.012

[5] A. Dupasquier, A.P. Mills, Jr . (Eds. ), Positron Spectroscopy of Solids, IOS, Amsterdam, (1995).

[6] R. Krause-Rehberg and H.S. Leipner (Eds. ), Positron Annihilation in Semiconductors – Defect Studies, Springer, Berlin, (1999).

DOI: https://doi.org/10.1007/978-3-662-03893-2_4

[7] K. Inoue, H. Saito, Y. Nagashima, T. Hyodo, Y. Nagai, S. Muramatsu, S. Nagai, K. Masuda, A position-sensitive g-ray detector for positron annihilation 2D-ACAR based on metal package photomultiplier tubes, Nucl. Instr. Methods A 487 (2002) 471–476.

DOI: https://doi.org/10.1016/s0168-9002(02)00390-x

[8] P.J. Foster, P. Mascher, A.P. Knights, P.G. Coleman, Implantation profile of 22Na continuous energy spectrum positrons in silicon, J. Appl. Phys. 101 (2007) art. 043702 (7 pp).

DOI: https://doi.org/10.1063/1.2472645

[9] R.H. Howell, T.E. Cowan, J. Hartley, P. Sterne, B. Brown, Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes, Appl. Surf. Sci. 116 (1997) 7-12.

DOI: https://doi.org/10.1016/s0169-4332(96)00965-8

[10] P.E. Mallon, Application to polymers, in: Y.C. Jean, P.E. Mallon, D.M. Schrader (Eds. ), Principles and Applications of Positron and Positronium Chemistry, World Scientific Publ., Singapore, 2003, Chapter 10, pp.253-280.

DOI: https://doi.org/10.1142/9789812775610_0010

[11] R.I. Grynszpan, W. Anwand, G. Brauer, P.G. Coleman, Positron depth profiling in solid surface layers, Annales de Chimie – Science des Materiaux (Ann. Chim. Sci. Mat. ) 32 (2007) 365-382.

DOI: https://doi.org/10.3166/acsm.32.365-382

[12] P.G. Coleman (Ed. ), Positron Beams and their applications, World Scientific, Singapore, (2000).

[13] A. Zecca, Positron beam development and design, Appl. Surf. Sci. 194 (2002) 4-12.

[14] C. V Falub, S.W. H Eijt, P. E Mijnarends, H Schut, A van Veen, Magnetic focusing of an intense slow positron beam for enhanced depth-resolved analysis of thin films and interfaces, Nucl. Instr. Methods A 488 (2002) 478–492.

DOI: https://doi.org/10.1016/s0168-9002(02)00566-1

[15] C. Hugenschmidt, G. Kögel, R. Repper, K. Schreckenbach, P. Sperr, B. Straßer, W. Triftshäuser, The neutron induced positron source at Munich – NEPOMUC, Nucl. Instr. Methods B 221 (2004) 160–164.

DOI: https://doi.org/10.1016/j.nimb.2004.03.048

[16] A. I. Hawari, D.W. Gidley, J. Xu, J. Moxom, A.G. Hathaway, B. Brown, R. Vallery, The intense slow positron beam facility at the NC State University PULSTAR reactor, in: F.D. McDaniel, B.L. Doyle (Eds. ), AIP Conf. Proc. 1099 (2009) 862-865.

DOI: https://doi.org/10.1063/1.3120175

[17] B.J. Hughey, R.E. Shefer, R.E. Klinkowstein, K.F. Canter, Experimental investigation of slow positron beams produced from accelerator-generated 13N, in: J. Duggan (Ed. ), AIP Conf. Proc. 392 (1997) 455-458.

DOI: https://doi.org/10.1063/1.52499

[18] A.W. Hunt, L. Pilant, D.B. Cassidy, R. Tjossem, M. Shurtliff, M.H. Weber, K.G. Lynn, The development of the intense positron beam at Washington State University, App. Surf. Sci. 194 (2002) 296-300.

DOI: https://doi.org/10.1016/s0169-4332(02)00138-1

[19] F. Ebel, W. Faust, C. Hahn, S. Langer, M. Rückert, H. Schneider, A. Singe, I. Tobehn, The slow positron source at the giessen 65 MeV linac, Nucl. Instr. Meth. A 272 (1988) 626-628.

DOI: https://doi.org/10.1016/0168-9002(88)90742-5

[20] P. Asoka-Kumar, R. Howell, W. Stoeffl, D. Carter, High intensity positron program at LLNL, in: J.L. Duggan, I.L. Morgan (Eds. ), AIP Conf. Proc. 475 (1998) 361-365.

DOI: https://doi.org/10.1063/1.59156

[21] N.B. Chilton, P.G. Coleman, A computer-controlled system for slow positron implantation spectroscopy, Meas. Sci. Technol. 6 (1995) 53-59.

DOI: https://doi.org/10.1088/0957-0233/6/1/010

[22] W. Anwand, G. Brauer, M. Butterling, H. -R. Kissener, A. Wagner, Design and Construction of a Slow Positron Beam for Solid and Surface Investigations, (see article in this book).

DOI: https://doi.org/10.4028/www.scientific.net/ddf.331.25

[23] A. van Veen, H. Schut, J. de Vries, R.A. Haakvoort, M.R. Ijpma, Positron beams for solids and surfaces, in: P.J. Schultz, G.R. Massoumi, P.J. Simpson (Eds. ), AIP Conf. Proc. 218 (1990) 171-177.

[24] H.E. Hansen, S. Linderoth, K. Petersen, Positron implantation profile in nickel, Appl. Phys. A 29 (1982) 99-103.

[25] A. Vehanen, K. Saarinen, P. Hautojärvi, H. Huomo, Profiling multilayer structures with monoenergetic positrons, Phys. Rev. B 35 (1987) 4606-4610.

DOI: https://doi.org/10.1103/physrevb.35.4606

[26] D. Schödlbauer, G. Kögel, P. Sperr, W. Triftshäuser, Lifetime measurements with a pulsed slow positron beam, phys. stat. sol. (a) 102 (1988) 549-554.

DOI: https://doi.org/10.1002/pssa.2211020210

[27] W. Bauer-Kugelmann, P. Sperr, G. Kögel, W. Triftshäuser, Latest version of the Munich pulsed low energy positron system, Mater. Sci. Forum 363-365 (2001) 529-531.

DOI: https://doi.org/10.4028/www.scientific.net/msf.363-365.529

[28] W. Egger, P. Sperr, G. Kögel, G. Dollinger, Pulsed low energy positron system (PLEPS) at the Munich research reactor FRM-II, phys. stat. sol. (c) 4 (2007) 3969-3972.

DOI: https://doi.org/10.1002/pssc.200675812

[29] P. Sperr, W. Egger, G. Kögel, G. Dollinger, C. Hugenschmidt, R. Repper, C. Piochacz, Status of the pulsed low energy positron beam system (PLEPS) at the Munich research reactor FRM- II, Appl. Surf. Sci. 255 (2008) 35-38.

DOI: https://doi.org/10.1016/j.apsusc.2008.05.307

[30] R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, T. Tomimasu, Slow Positron Pulsing System for Variable Energy Positron Lifetime Spectroscopy, Jpn. J. Appl. Phys. 30 (1991) L532-L534.

DOI: https://doi.org/10.1143/jjap.30.l532

[31] M. Butterling, W. Anwand, T.E. Cowan, A. Hartmann, M. Jungmann, R. Krause-Rehberg, A. Krille, A. Wagner, Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269 (2011).

DOI: https://doi.org/10.1016/j.nimb.2011.06.023

[32] Information on http: /positron. physik. uni-halle. de/EPOS.

[33] J.R. Davis, ASM Specialty Handbook®, Nickel, Cobalt, and Their Alloys, Davis & Associates (Eds. ), Prepared under the direction of the ASM international Handbook Committee, ISBN: 0-87170-685-7, SAN: 204-7586,  pp.367-370.

[34] I. Halevy, S. Haroush, Y. Eisen, I. Silberman, D. Moreno, Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC), Hyp. Interactions 197 (2010) 135-141.

DOI: https://doi.org/10.1007/978-94-007-1269-0_25

[35] G. Brauer, L. Liszkay, B. Molnar, R. Krause, Microstructural aspects of neutron embrittlement of reactor pressure vessel steels - a view from positron annihilation spectroscopy, Nucl. Engrg. Design 127 (1991) 47-68.

DOI: https://doi.org/10.1016/0029-5493(91)90039-k

[36] A. Polity, F. Börner, S. Huth, S. Eichler, R. Krause-Rehberg, Defects in electron-irradiated Si studied by positron-lifetime spectroscopy, Phys. Rev. B 58 (1998) 10363-10377.

DOI: https://doi.org/10.1103/physrevb.58.10363

[37] S. McGuire, D.J. Keeble, Positron lifetimes of polycrystalline metals: A positron source correction study, J. Appl. Phys. 100 (2006) art. 103504 (6 pp).

DOI: https://doi.org/10.1063/1.2384794

[38] H. Surbeck, Lebensdauer der Positronen in Silberbromid, Helv. Phys. Acta 50 (1977) 705-721.

[39] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, GEANT4 – a simulation toolkit, Nucl. Instr. Methods A 506 (2003).

DOI: https://doi.org/10.1016/s0168-9002(03)01368-8

[40] J. Mahony, T. Friessnegg, G. Tessaro, P. Mascher, W. Puff, Transmission of positrons with a b+ energy distribution through thin films, Appl. Phys. A 63 (1996) 299-301.

DOI: https://doi.org/10.1007/bf01567885

[41] S. McGuire, D.J. Keeble, Positron lifetime and implantation in Kapton, J. Phys. D: Appl. Phys. 39 (2006) 3388-3393.

DOI: https://doi.org/10.1088/0022-3727/39/15/025

[42] P. Kirkegaard, N.J. Pedersen, M. Eldrup, Techn. Report Riso-M-2740, Riso Nat. Lab., Roskilde (Denmark) (1989).

[43] K. Fransson, A. Nilsson, J. De Raedt, K. -G. Rensfelt, Problems related to the use of annihilation radiation for precision energy calibration of Ge(Li) detectors, Nucl. Instr. Meth. 138 (1976) 479-487.

DOI: https://doi.org/10.1016/0029-554x(76)90314-1

[44] B. Bergersen, E. Pajanne, P. Kubica, M.J. Stott, C.H. Hodges, Positron Diffusion in Metals, Solid State Commun. 15 (1974) 1377-1380.

DOI: https://doi.org/10.1016/0038-1098(74)91384-2

[45] A. Dupasquier, G. Kögel, A. Somoza, Studies of light alloys by positron annihilation techniques, Acta Mater. 52 (2004) 4707–4726.

DOI: https://doi.org/10.1016/j.actamat.2004.07.004

[46] H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, M. Kiritani, Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe, Mat. Sci. Engrg. A350 (2003) 95-101.

DOI: https://doi.org/10.1016/s0921-5093(02)00705-0