Defect and Dislocation Density Parameters of 5251 Al Alloy Using Positron Annihilation Lifetime Technique


Article Preview

The result of positron lifetime measurements of a defected 5251 Al alloy is reported. Positron lifetime is measured as a function of the thickness reduction of the sample which shows a nearly linear increase and then becomes constant; which can be considered to be a reason for the defect movement saturation. The trapping rate, trapping efficiency, trapping cross-section, defect concentration and defect density of positrons are also measured for the sample concerned. The behaviors of these parameters are matched with theoretical calculations. Data are analyzed using the PATFIT88 computer program.



Edited by:

D.J. Fisher




M.A. Abdel-Rahman et al., "Defect and Dislocation Density Parameters of 5251 Al Alloy Using Positron Annihilation Lifetime Technique", Defect and Diffusion Forum, Vol. 332, pp. 17-25, 2012

Online since:

December 2012




[1] M.A. Abdel Rahman, E.A. Badawi, E.M. Hassan and G.A. Yahya: Determination of the Activation Enthalpy for Migration of Point Defects & Dislocations in Deformed Al-Mg (5005) Alloy by (PAT),. Materials Science Forum, 363-365 (2001) 173-75.


[2] W. Deng, R.S. Brusa, G.P. Karwasz and A. Zecca: Defect Studies in‏ Fe3Al Alloys Doped with Cr, Mo and Si, , Materials Science Forum, 363-365 (2001) 195-97.


[3] W.J. Cheng, Z.H. Shao, Z. Chang, C.X. Xing and W.H. Jing Positron Annihilation Study of Aging Cu-Zn-Al Alloy Subjected to Different Heat-Treatments, , Scripta Metallurgica et Materialia, 24(11) (1990) 2221-24.


[4] M. Mohsen, H. Ismail, A. Ashry, G. Brauer and S. Mohamed, Lattice Defects in Industrial Al Probed by Positrons, Materials Science Forum, 363-365 (200) 1216-18.


[5] W.R. Wampler and W.B. Gauster: A Study of Precipitation Phenomena in Aluminium Alloys by Positron Annihilation, in Proceedings of 5th International Conference on Positron Annihilation, Japan, (1979).

[6] R.M. Cotterill, K. Petersen, G. Trumpy, J. Traiff: Journal of Physics F, Metal Physics, 2 (1972) 459.

[7] P. Hautojarvi, A. Tamminen, P. Jauho: Physical Review Letters, 24 (1970) 459.

[8] J. Baram, M. Rosen: Physica Status Solidi (a), 16 (1973) 263.

[9] P.A.M. Dirac, Proceedings of the Royal Society, 117 (1928) 610.

[10] C.D. Anderson, Science, 76 (1932) 238.

[11] S. Mohorovicic, Astron. Nachr., 93 (1934) 253.

[12] M. Deutsch, Physical Review, 82 (1951) 455.

[13] R. Behringer, C.G. Montgomery, Physical Review, 61 (1942) 222.

[14] De Benedetti et al., Physical Review, 77 (1950) 205.

[15] I.K. MacKenzie et al., Phys. Rev. Lett. 1967, 19, 946.

[16] W. Brandt, H.F. Waung, P.W. Levy, Proc. Intern. Symp. Color Centers in Alkali Solids, Rome, 1968, 48.

[17] I.Y. Dekthyar, V.S. Mikhalenkov, S.G. Sakharova, Fiz. Tverd. Tela, 11 (1969) 3322.

[18] K. Saarinen, P. Hautojärvi, C. Corbel, in Identification of Defects in Semiconductors, (ed. by M. Stavola), Semiconductors and Semimetals, Vol. 51A, Academic Press, San Diego, (1998).


[19] M.A. Abdel-Rahman and E.A. Badawi, Jpn. Appl. Phys., 35 (1996) 4827.

[20] E.A. Badawi, M.A. Abdel-Rahman and E.M. Hassan, Materials Science Forum, 445 (2004) 45.

[21] E.A. Badawi, M.A. Abdel-Rahman and N.Z. El-Sayed. Aluminum Transactions, 2(1) 2001, 91.

[22] P. Kirkegaard, M. Eldrp, O. Mogensen and N. Pedersen, Computer Physics Communications, 23 (1981) 307.

[22] M.A. Abdel-Rahman, Japanese Journal of Applied Physics, 36 (1997) 6530.

[23] C. Dauwe, M. Dorikens, L. Dorikens and D. Segers, Appl. Phy., 5, 117.

Fetching data from Crossref.
This may take some time to load.