Anisotropy of Hydrogen Diffusivity in ZnO


Article Preview

Hydrogen absorption and diffusivity in high quality ZnO crystals were investigated in this work by X-ray diffraction combined with slow positron implantation spectroscopy and electrical resistometry. ZnO crystals were covered by a thin Pd over-layer and electrochemically charged with hydrogen. It was found that absorbed hydrogen causes plastic deformation in a sub-surface region. The depth profile of hydrogen concentration introduced into the crystal was determined by nuclear reaction analysis. Enhanced hydrogen concentration was found in the sub-surface region due to excess hydrogen atoms trapped at defects introduced by plastic deformation. Hydrogen diffusion in ZnO crystals with various orientations was studied by in-situ electrical resistometry. It was found that hydrogen diffusion in the c-direction is faster than hydrogen diffusion in the a-direction most probably due to open channels existing in the wurtzite structure along the c-axis.



Edited by:

Prof. Andreas Öchsner, Prof. Irina V. Belova and Prof. Graeme E. Murch




J. Čížek et al., "Anisotropy of Hydrogen Diffusivity in ZnO", Defect and Diffusion Forum, Vol. 333, pp. 39-49, 2013

Online since:

January 2013




[1] D.C. Look, Mater. Sci. Eng. B Vol. 80 (2001), p.383.

[2] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, and H. Morkoç, J. Appl. Phys. Vol. 98 (2005), p.041301.


[3] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater. Sci. Vol. 50 (2005), p.293.

[4] M.D. McCluskey and J. Jokela, J. Appl. Phys. Vol. 106 (2009), p.071101.

[5] C. G. Van de Walle, Phys. Rev. Lett. Vol. 85 (2000), p.101233.

[6] G. Brauer, W. Anwand, D. Grambole, J. Genzer, W. Skorupa, J. Čížek, J. Kuriplach, I. Procházka, C.C. Ling, C.K. So, D. Schultz and D. Klimm, Phys. Rev. B Vol. 79 (2009), p.115212.


[7] J. Čížek, N. Žaludová, M. Vlach, S. Daniš, J. Kuriplach, I. Procházka, G. Brauer, W. Anwand, D. Grambole, W. Skorupa, R. Gemma, R. Kirchheim and A. Pundt: J. Appl. Phys. Vol. 103 (2008), p.053508.


[8] P.J. Schultz and K.G. Lynn, Rev. Mod. Phys. Vol. 60 (1988), p.701.

[9] W.A. Lanford, in: Handbook of Modern Ion Beam Materials Analysis, edited by R. Tesmer and M. Nastasi, Materials Research Society, Pittsburg (1995), p.193.

[10] R. Kircheim, Prog. Mater. Sci. Vol. 32 (1988), p.261.

[11] W. Anwand, H.R. Kissener and G. Brauer, Acta Physica Polonica A Vol. 88 (1995), p.7.

[12] J. Čížek, F. Lukáč, M. Vlček, I. Procházka, F. Traeger, D. Rogalla, H. -W. Becker: Defect and Diffusion Forum Vols. 326-328 (2012), p.459.


[13] A. van Veen, H. Schut, M. Clement, J. de Nijs, A. Kruseman and M. Ijpma, Appl. Surf. Sci. Vol. 85 (1995), p.216.


[14] T. Koida, A. Uedono, A. Tsukazaki, T. Sota, M. Kawasaki and S.F. Chichibu, phys. stat. sol. (a) Vol. 201 (2004), p.2841.


[15] R. Krause-Rehberg and H.S. Leipner, Positron Annihilation in Semiconductors – Defect Studies, Springer, Berlin (1999).


[16] E. V. Lavrov, J. Weber, F. Börrnert, C. G. Van de Walle, and R. Helbig, Phys. Rev. B Vol. 66 (2002), p.165205.

[17] B. Geerken, R. Griessen: J. Phys. F, Metal Phys Vol. 13 (1983), p.13.

[18] S. Wagner, A. Pundt, Acta Mater. Vol. 58 (2010), p.1387.