Lithium Diffusion in Li-Rich and Li-Poor Amorphous Lithium Niobate


Article Preview

The diffusion of lithium in amorphous lithium niobate layers is studied as a function of temperature between 293 and 423 K. About 800 nm thick amorphous 7LiNbO3 layers were deposited on sapphire substrates by ion-beam sputtering. As a tracer source about 20 nm thin 6LiNbO3 layers were sputtered on top. Isotope depth profile analysis is done by secondary ion mass spectrometry. Compared are amorphous samples which show a ratio of Li : Nb < 1 (Li-poor) and of Li : Nb > 1 (Li-rich) close to the stoichiometric composition of Li : Nb = 1 for crystalline LiNbO3. The results reveal that the diffusivities of both types of samples obey the Arrhenius law with an activation enthalpy of 0.70 eV and 0.83 eV, respectively. The diffusivities of the sample containing a higher amount of Li are lower by a factor of about two to ten. This demonstrates that variation of the Li content in amorphous samples over the stability range of the crystalline LiNbO3 phase has only a modest influence on diffusivities and activation enthalpies.



Edited by:

S.V. Divinski, H. Bracht and N.A. Stolwijk






J. Rahn et al., "Lithium Diffusion in Li-Rich and Li-Poor Amorphous Lithium Niobate", Defect and Diffusion Forum, Vol. 363, pp. 62-67, 2015

Online since:

May 2015




[1] T. Volk, M. Wöhlecke, Lithium Niobate, Springer, Berlin, (2010).

[2] K. K. Wong, Properties of Lithium Niobate, Inspec, London, (2002).

[3] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Phys. Chem. Chem. Phys. 14 (2012) 2427.

DOI: 10.1039/c2cp23548j

[4] J. Rahn, L. Dörrer, B. Ruprecht, P, Heitjans, H. Schmidt, Defect-Diffus. Forum 333 (2013) 33.

[5] E. Hüger, J. Rahn, J. Stahn, T. Geue, H. Schmidt, Phys. Rev. B 85 (2012) 214102.

[6] E. Hüger, J. Rahn, J. Stahn, T. Geue, P. Heitjans, H. Schmidt, Phys. Chem. Chem. Phys. 16 (2014) 8670.

[7] M. Masoud, P. Heitjans, Defect-Diffus. Forum 237-240 (2005) 1016.

[8] B. Ruprecht, J. Rahn, H. Schmidt, P. Heitjans, Z. Phys. Chem. 226 (2012) 431.

[9] N. Kamaya et al., Nat. Mater. 10 (2011) 682.

[10] M. Ogawa, R. Kanda, K. Yoshida, T. Uemura, K. Harada, J. Power Sources 205 (2012) 487.

[11] P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening, Faraday Discuss. 134 (2007) 67.

[12] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Z. Phys. Chem. 226 (2012) 439.

[13] V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, L. McCaughan, J. Cryst. Growth, 259 (2003) 273.

DOI: 10.1016/j.jcrysgro.2003.08.001

[14] H. Schmidt et al., J. Appl. Phys. 93 (2003) 907.

[15] H. Schmidt, U. Geckle, M. Bruns, Phys. Rev. B. 74 (2006) 045203.

[16] E. Hüger, U. Tietze, D. Lott, H. Bracht, E. E. Haller, D. Bougeard, H. Schmidt, Appl. Phys. Lett. 93 (2008) 162104.

DOI: 10.1063/1.3002294

[17] H. A. Bracht, H. H. Silvestri, E. E. Haller, Solid State Commun. 133 (2005) 727.

[18] J. Crank, The Mathematics of Diffusion, Oxford University Press, Oxford, (1975).

[19] A. Weidenfelder, J. Shi, P. Fielitz, G. Borchardt, K. D. Becker, H. Fritze, Solid State Ionics 225 (2012) 26.

DOI: 10.1016/j.ssi.2012.02.026

In order to see related information, you need to Login.