Direct Numerical Simulation of the Pressure Drop through Structured Porous Media

Abstract:

Article Preview

This paper presents direct numerical simulations for the flow through regular porous media composed of equal size staggered square cylinders obtained with a compact finite differences immersed boundary method. Different moderate Reynolds numbers are simulated in order to capture the dependence of the pressure drop with the Reynolds number in the Forchheimer regime. The pressure drop predictions agree well with the Hazen-Dupuit-Darcy model; however, when compared to a widely used semi-empirical correlation, the modified Ergun equation, the agreement is poor. A better agreement is found if the particle diameter is taken to be equal to the cylinder diameter. From the intrinsic-averaged pressure calculated along the flow direction, it can be seen that, for the porous media studied, the bulk pressure drop dominates and the entrance and exit effects are negligible.

Info:

Periodical:

Edited by:

Andreas Öchsner, Irina Belova and Graeme Murch

Pages:

192-200

DOI:

10.4028/www.scientific.net/DDF.364.192

Citation:

I. Malico et al., "Direct Numerical Simulation of the Pressure Drop through Structured Porous Media", Defect and Diffusion Forum, Vol. 364, pp. 192-200, 2015

Online since:

June 2015

Export:

Price:

$35.00

* - Corresponding Author

[1] P. Forchheimer: VDI Zeitschrift Vol. 45 (1901), p.1782.

[2] J.L. Lage, B.V. Antohe and D.A. Nield: J. Fluids Eng. Vol. 119 (1997), p.700.

[3] J. Dupuit: Etudes Théoriques et Pratiques sur le Mouvement des Eaux (Dunod, France 1863).

[4] I. Kececioglu and Y. Jiang: J. Fluids Eng. Vol. 116 (1994), p.164.

[5] C.C. Mei and J. -L. Auriault: Ind. Eng. Chem. Fundam Vol. 18 (1991), p.199.

[6] R.J. Hill, D.L. Koch and A.J.C. Ladd: J. Fluid Mech. Vol. 448 (2001), p.213.

[7] Z. Chai, B. Shi, J. Lu and Z. Guo: Comput. Fluids Vol. 39 (2010), p. (2069).

[8] R.M. Fand, B.Y.K. Kim, A.C.C. Lam and R.T. Phan: J. Fluids Eng. Vol. 109 (1987), p.268.

[9] P.J.S.A. Ferreira de Sousa, I. Malico, G. Fernandes: Def Diff Forum Vol. 326-328 (2012), p.725.

[10] P.J.S.A. Ferreira de Sousa, I. Malico and G. Fernandes: Defect Diff Forum Vol. 334-335 (2013), p.359.

DOI: 10.4028/www.scientific.net/ddf.334-335.359

[11] S. Ergun: Chem. Eng. Prog. Vol. 48 (1952), p.89.

[12] L. Li and W. Ma: Transp. Porous Med. Vol 89 (2011), p.35.

[13] I. Macdonald, M. El-Sayed, K. Mow, F.A.L. Dullien: Ind. Eng. Chem. Fundam Vol. 18 (1979), p.199.

[14] J. Bernsdorf, G. Breener and F. Durst: Comput. Phys. Commun. Vol. 129 (2000), p.247.

[15] R.J. Hill, D.L. Koch and A.J.C. Ladd: J. Fluid Mech. Vol. 448 (2001b), p.243.

[16] I. Malico and P.J.S.A. Ferreira de Sousa, in: Numerical Analysis of Heat and Mass Transfer in Porous Media, edited by J.M.P. Q Delgado, A.G. Barbosa de Lima and M.V. da Silva, volume 27 of Advanced Structured Materials, chapter, 9, Springer-Verlag Berlin Heidelberg (2012).

DOI: 10.1007/978-3-642-30532-0

[17] C.S. Peskin: J. Comp. Phys. Vol. 10 (1972), p.252.

[18] J. Mohd-Yusof: Combined Immersed Boundaries/B-Splines Methods for Simulations of Flows in Complex Geometries (CTR Annual Research Briefs 1997).

[19] P.J.S.A. Ferreira de Sousa, J. Pereira, J.J. Allen: Int J Num Meth Fluids Vol. 65(2011), p.609.

[20] N. Jeong, D. H Choi and C. -L. Lin: J. Micromech Microeng. Vol. 16 (2006), p.2240.

[21] F. Kuwahara, T. Yamane, A. Nakayama: Int Commun Heat Mass Transf Vol. 33(2006), p.411.

[22] F.E. Teruel and Rizwan-uddin: Int. J. Heat Mass Transf. Vol 52 (2009), p.5878.

In order to see related information, you need to Login.