An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry

Abstract:

Article Preview

We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

Info:

Periodical:

Edited by:

Antonio F. Miguel, Luiz Alberto Oliveira Rocha and Prof. Andreas Öchsner

Pages:

31-39

DOI:

10.4028/www.scientific.net/DDF.366.31

Citation:

M. Al-Marouf and R. Samtaney, "An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry", Defect and Diffusion Forum, Vol. 366, pp. 31-39, 2016

Online since:

April 2016

Export:

Price:

$38.00

[1] T. D. Aslam. Journal of Computational Physics, 193(1): 349 – 355, (2004).

[2] P. Colella. Journal of Computational Physics, 87(1): 171–200, March (1990).

[3] J. Saltzman. Journal of Computational Physics, 115(1): 153–168, November (1994).

[4] P. A. Berthelsen and O. M. Faltinsen. Journal of Computational Physics, 227(9): 4354 – 4397, (2008).

[5] R. Verzicco, J. Mohd-Yusof, P. Orlandi, and D. Haworth. AIAA Journal, 38(3): 427– 433, (2000).

[6] H. Uddin, R.M.J. Kramer, and C. Pantano. Journal of Computational Physics, 262(0): 379 – 407, (2014).

[7] M. Adams, P. Colella, D. T. Graves, J. N. Johnson, N. D. Keen, T. J. Ligocki, D. F. Martin, P. W. McCorquodale, D. Modiano, P. O. Schwartz, T. D. Sternberg, and B. Van Straalen. Chombo software package for amr applications design document.

[8] M. J. Berger and J. Oliger. Journal of Computational Physics, 53(3): 484 – 512, (1984).

[9] M. J. Berger and P. Colella. Journal of Computational Physics, 82(1): 64 – 84, (1989).

[10] M. D. de Tullio, P. De Palma, G. Iaccarino, G. Pascazio, and M. Napolitano. Journal of Computational Physics, 225(2): 2098 – 2117, (2007).

DOI: 10.1016/j.jcp.2007.03.008

[11] V. A. Bashkin, A. V. Vaganov, I. V. Egorov, D. V. Ivanov, and G. A. Ignatova. Fluid Dynamics, 37(3): 473–483, (2002).

DOI: 10.1023/a:1019675027402

[12] R. Gautier, D. Biau, and E. Lamballais. Computers & Fluids, 75(0): 103 – 111, (2013).

[13] P. H. Chiu, R. K. Lin, and Tony W. H. Sheu. Journal of Computational Physics, 229(12): 4476 – 4500, (2010).

[14] D. V. Le, B. C. Khoo, and J. Peraire. Journal of Computational Physics, 220(1): 109 – 138, (2006).

[15] E. Stålberg, A. Brüger, P. Lötstedt, A. Johansson, and D. Henningson. Journal of Scientific Computing, 27(1-3): 431–441, (2006).

[16] R. Ghias, R. Mittal, and H. Dong. Journal of Computational Physics, 225(1): 528 – 553, (2007).

[17] E. Balaras. Computers & Fluids, 33(3): 375 – 404, (2004).

[18] S. Mittal and R. Balachandar. ASME Fluids Engineering Division Summer Meeting, (1997).

In order to see related information, you need to Login.