Atomic Transport in Nano-Сrystalline Thin Films


Article Preview

Ge and B diffusion was studied in nanocrystalline Si, and Pd and Si self-diffusion was studied in nanocrystalline Pd2Si during and after Pd/Si reactive diffusion. These experiments showed that grain boundary (GB) diffusion kinetic is the same in micro-and nanoGBs, whereas triple junction (TJ) diffusion is several orders of magnitude faster than GB diffusion. In addition, GB segregation and GB migration can significantly modify atomic diffusion profiles in nanocrystalline materials, and atomic transport kinetics can be largely increased in nanograins compared to micro-grains, as well as during reactive diffusion, probably due to an increase of point defect concentration. These observations show that atomic transport in nanometric layers during reactive diffusion is complex, since GBs and TJs are moving and the proportion of GBs and TJs is changing during the layer growth.



Edited by:

Prof. Andreas Öchsner, Prof. Irina V. Belova and Prof. Graeme E. Murch




A. Portavoce et al., "Atomic Transport in Nano-Сrystalline Thin Films", Defect and Diffusion Forum, Vol. 367, pp. 140-148, 2016

Online since:

April 2016




[1] S.M. Sze: VLSI Technology (International Edition, Singapore, 1988), p.397.

[2] M.A. Nicolet and S.S. Lau: VLSI Electronics, Microstructure Science(Academic Press, New York, 1983), Vol. 6, p.330.

[3] C. Lavoie, F. M. d'Heurle, C. Detavernier, and C. Cabral, Jr.: Microelectron. Eng. Vol. 70 (2003), p.144.

[4] S. Bonnetier, B. Imbert, M. Hopstaken, D. Galpin, R. Gwoziecki, D. Barge, S. Zoll, O. Anilturk, E. Sicurani, C. Caillat, A. Barr, R. Gonella, Y. Espinoux, P. Mur, N. Mayet, A. Gotti, and M. -T. Basso: Microelectron. Eng. Vol. 84 (2007), p.2528.


[5] B. -Y. Tsaur and C. H. Anderson, Jr.: Appl. Phys. Lett. Vol. 47 (1985), p.525.

[6] P. Gas, C. Girardeaux, D. Mangelinck, and A. Portavoce: Mat. Sci. Eng. B Vol. 101 (2003), p.43.

[7] T. Schram, A. Spessot, R. Ritzenthaler, E. Rosseel, C. Caillat, and N. Horiguchi: Microelec. Eng. Vol. 120 (2014), p.157.

[8] A. Portavoce, K. Hoummada, F. Dahlem: Surf. Sci. Vol. 624 (2014), p.135.

[9] U. Gosele, K.N. Tu: J. Appl. Phys. Vol. 53 (1982), p.3252.

[10] F.M. d'Heurle and P. Gas: J. Mater. Res. Vol. 1 (1986), p.205.

[11] A. Portavoce and G. Tréglia: Phys. Rev. B Vol. 82 (2010), p.205431.

[12] A. Portavoce, G. Chai, L. Chow, and J. Bernardini: J. Appl. Phys. Vol. 104 (2008), p.104910.

[13] A. Portavoce, L. Chow, and J. Bernardini: Appl. Phys. Lett. Vol. 96 (2010), p.214102.

[14] A. Portavoce: Scripta Mater. Vol. 99 (2015), p.37.

[15] S. Duguay, T. Philippe, F. Cristiano, and D. Blavette: Appl. Phys. Lett. Vol. 97 (2010), p.242104.

[16] D. Mangelinck, K. Hoummada, A. Portavoce, C. Perrin, R. Daineche, M. Descoins, D.J. Larson and P.H. Clifton: Scripta Mater. Vol. 62 (2010), p.568.


[17] K. Hoummada, G. Tellouche, I. Blum, A. Portavoce, M. Descoins, and D. Mangelinck: Microelec. Eng. Vol. 107 (2013), p.184.

[18] A. Portavoce, O. Abbes, A. Spiesser, C. Girardeaux, L. Michez, and V. Le Thanh: Scripta Mater. Vol. 100 (2015), p.70.

[19] D. De Salvador, E. Napolitani, S. Mirabella, E. Bruno, G. Impellizzeri, G. Bisognin, E.F. Pecora, F. Priolo, and A. Carnera: Mat. Sci. Eng. B Vol. 154–155 (2008), p.240.


[20] S. Jin, K.S. Jones, M.E. Law, and R. Camillo-Castillo: J. Appl. Phys. Vol. 111 (2012), p.044508.

[21] J.W. Cahn: Acta Metal. Vol. 10 (1962), p.789.

[22] S.G. Kim and Y.B. Park: Acta Mater. Vol 56 (2008), p.3739.

[23] A. Portavoce, R. Simola, D. Mangelinck, J. Bernardini1, and P. Fornara: Diffusion and Defect Data Vol. 264 (2007), p.33.


[24] A. Portavoce, D. Mangelinck, R. Simola, R. Daineche, and J. Bernardini: Defect and Diffusion Forum Vols. 289-292 (2009), p.329.


[25] H. Mehrer: Diffusion in Solids (Springer-Verlag, Berlin Heidelberg, 2007).

[26] A. Portavoce, I. Blum, L. Chow, J. Bernardini, D. Mangelinck: Defect and Diffusion Forum Vols. 309-310 (2011), p.63.


[27] F. Liu, G. Yang, H. Wang, Z. Chen, and Y. Zhou: Thermochimica Acta vol. 443 (2006), p.212.

[28] A. Rolland and J. Bernardini: Scripta Metal. Vol. 19 (1985), p.839.

[29] A. Rolland, J. Bernardini, G. Moya, C. Girardeaux: Surf. Sci. Vol. 566–568 (2004), p.1163.

[30] Z. Balogh, Z. Erdélyi, D.L. Beke, G.A. Langer, A. Csik, H. -G. Boyen, U. Wiedwald, P. Ziemann, A. Portavoce, and C. Girardeaux: Appl. Phys. Lett. Vol. 92 (2008), p.143104.


[31] Z. Balogh, Z. Erdélyi, D.L. Beke, A. Portavoce, C. Girardeaux, J. Bernardini, and A. Rolland: Appl. Surf. Sci. 255 (2009), p.4844.


[32] E.C. Zingu, J.W. Mayer, C. Comrie, and R. Pretorius: Phys. Rev. B Vol. 30 (1984), p.5916.

[33] J.M. Egan and C.M. Comrie: Phys. Rev. B Vol. 40 (1989), p.11670.

[34] M. Seibt and K. Graff: J. Appl. Phys. Vol. 63 (1988), p.4444.

[35] M. Ronay and R.G. Schad: Phys. Rev. Lett. Vol. 64 (1990), p. (2042).

[36] J.E. Masse, P. Knauth, P. Gas, and A. Charaï: J. Appl. Phys. Vol. 77 (1995), p.934.

Fetching data from Crossref.
This may take some time to load.