On Morphological and Microstructural Changes in Uranium Dioxide Powder during Binder-Free Hot Pressing


Article Preview

Plasticity of oxide fuel based on uranium dioxide is one of the less-covered topics in nuclear materials science. A useful tool to study the deformation mechanisms in this material at elevated temperatures is hot pressing. In this work, UO$_{2.06}$ powder prepared via~ADU route was uniaxially compacted at temperatures within the~$250$--$600$~{\textdegree}C range under a compressive axial stress from~$95$ to~$220$~MPa applied for a time interval between~$10$ and~$60$~min. Examinations performed with scanning electron microscopy~(SEM) and density measurements revealed a temperature effect on densification when increasing the compaction temperature from~$400$ to~$600$~\textdegree{C} with other conditions being equal. By varying the loading duration for hot pressing at~$600$~{\textdegree}C under constant compressive stress~$95$~MPa, different stages of compactions were analyzed. In addition,~XRD measurements revealed a texture developing in the material during compaction and a possible increase in dislocation density. It is argumented that dislocation-mediated plasticity contributes to densification at elevated temperatures.



Edited by:

Dr. Sergey Starikov, Dr. Daria Smirnova and Dr. Artem Lunev




A. Lunev et al., "On Morphological and Microstructural Changes in Uranium Dioxide Powder during Binder-Free Hot Pressing", Defect and Diffusion Forum, Vol. 375, pp. 114-122, 2017

Online since:

May 2017




* - Corresponding Author

[1] H. Ching-Tsven, Dry-ADU process for UO2 production, Journal of Nuclear Materials 199, 1 (1992) 61-67.

DOI: https://doi.org/10.1016/0022-3115(92)90440-v

[2] P. Yi-Ming, M. Che-Bao, H. Nien-Nan, The conversion of UO2 via ammonium uranyl carbonate: Study of precipitation, chemical variation and powder properties, Journal of Nuclear Materials 99, 2 (1981) 135-147.

DOI: https://doi.org/10.1016/0022-3115(81)90182-3

[3] T. Abe, K. Asakura, 2. 15 - uranium oxide and MOX production, in: R. J. Konings (Ed. ), Comprehensive Nuclear Materials, Elsevier, Oxford, 2012, pp.393-422.

DOI: https://doi.org/10.1016/b978-0-08-056033-5.00036-7

[4] P. Balakrishna, B. N. Murty, D. Ratnam, M. Anuradha, C. Ganguly, Light attrition of uranium dioxide powder, Ceramics International 29, 1 (2003) 99-105.

DOI: https://doi.org/10.1016/s0272-8842(02)00079-2

[5] V. G. Baranov, R. S. Kuzmin, A. V. Tenishev, A. V. Khlunov, A. V. Ivanov, I. V. Petrov, I. S. Timoshin, Sintering particulars of pelletized oxide nuclear fuel, Atomic Energy 110, 3 (2011) 172-177.

DOI: https://doi.org/10.1007/s10512-011-9407-3

[6] G. Gündüz, İbrahim Uslu, Powder characteristics and microstructure of uranium dioxide and uranium dioxide-gadolinium oxide fuel, Journal of Nuclear Materials 231, 1 (1996) 113 - 120.

DOI: https://doi.org/10.1016/0022-3115(96)00349-2

[7] V. Baranov, Y. Devyatko, A. Tenishev, A. Khlunov, O. Khomyakov, Sintering of oxide nuclear fuel: Plastic flow mechanism, Journal of Nuclear Materials 432, 1-3 (2013) 52 - 56.

DOI: https://doi.org/10.1016/j.jnucmat.2012.07.050

[8] C. Ang, K. Burkhammer, Sintering of high density uranium dioxide bodies, Journal of Nuclear Materials 2, 2 (1960) 176 - 180.

DOI: https://doi.org/10.1016/0022-3115(60)90045-3

[9] I. Amato, R. Colombo, A. Balzari, Hot-pressing of uranium dioxide, Journal of Nuclear Materials 20, 2 (1966) 210 - 214.

DOI: https://doi.org/10.1016/0022-3115(66)90009-2

[10] R. Keller, T. Mitchell, A. Heuer, Plastic deformation in nonstoichiometric UO2+x single crystals-I. deformation at low temperatures, Acta Metallurgica 36, 4 (1988) 1061 - 1071.

DOI: https://doi.org/10.1016/0001-6160(88)90160-5

[11] A. Lunev, A. Kuksin, S. Starikov, Glide mobility of the 1/2[1 1 0](0 0 1) edge dislocation in UO2 from molecular dynamics simulation, International Journal of Plasticity 89 (2017) 85 - 95.

DOI: https://doi.org/10.1016/j.ijplas.2016.11.004

[12] P. Pizette, C. L. Martin, G. Delette, F. Sans, T. Geneves, Green strength of binder-free ceramics, Journal of the European Ceramic Society 33, 5 (2013) 975 - 984.

DOI: https://doi.org/10.1016/j.jeurceramsoc.2012.11.018

[13] R. Crawford, D. Paul, D. Sprevak, Solid phase compaction of polymeric powders: effects of compaction conditions on pressure and density variations, Polymer 23, 1 (1982) 123 - 128.

DOI: https://doi.org/10.1016/0032-3861(82)90025-8

[14] B. Briscoe, S. Rough, The effects of wall friction in powder compaction, Colloids and Surfaces A: Physicochemical and Engineering Aspects 137, 1 (1998) 103 - 116.

DOI: https://doi.org/10.1016/s0927-7757(97)00210-0

[15] B. Warren, B. Averbach, The effect of cold-work distortion on X-ray patterns, Journal of Applied Physics 21, 6 (1950) 595-599.

DOI: https://doi.org/10.1063/1.1699713

[16] R. Delhez, E. Mittemeijer, The elimination of an approximation in the Warren-Averbach analysis, Journal of Applied Crystallography 9, 3 (1976) 233-234.

DOI: https://doi.org/10.1107/s0021889876011035

[17] V. G. Baranov, A. V. Lunev, V. F. Reutov, A. V. Tenishev, M. G. Isaenkova, A. V. Khlunov, An attempt to reproduce high burn-up structure by ion irradiation of SIMFUEL, Journal of Nuclear Materials 452, 1-3 (2014) 147-157.

DOI: https://doi.org/10.1016/j.jnucmat.2014.04.002

[18] Y. Perlovich, M. Isaenkova, V. Fesenko, Express method of construction of accurate inverse pole figures, IOP Conference Series: Materials Science and Engineering 130, 1 (2016) 012057.

DOI: https://doi.org/10.1088/1757-899x/130/1/012057

[19] R. Frey, J. W. Halloran, Compaction behavior of spray-dried alumina, Journal of the American Ceramic Society 67, 3 (1984) 199-203.

DOI: https://doi.org/10.1111/j.1151-2916.1984.tb19742.x

[20] Y. Perlovich, M. Isaenkova, O. Krymskaya, V. Baranov, M. Perlovich, A. Tenishev, The role of residual elastic stress in shrinkage of cold-pressed and sintered fuel tablets, in: Advanced Materials Research, Vol. 996, Trans Tech Publ, 2014, pp.701-706.

DOI: https://doi.org/10.4028/www.scientific.net/amr.996.701

[21] M. R. Castell, C. Muggelberg, G. A. D. Briggs, D. T. Goddard, Scanning tunneling microscopy of the UO2 (111) surface, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 14, 2 (1996).

DOI: https://doi.org/10.1116/1.589185

[22] J. Tlatlik, D. Siegele, Cleavage fracture assessment of transient thermo-mechanical loading situations by local approach, Engineering Fracture Mechanics (2017) http: /dx. doi. org/10. 1016/j. engfracmech. 2017. 02. 012.

DOI: https://doi.org/10.1016/j.engfracmech.2017.02.012

[23] R. L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials, Journal of Applied Physics 34, 6 (1963) 1679-1682.

DOI: https://doi.org/10.1063/1.1702656

[24] V. Baranov, Y. N. Devyatko, A. Tenishev, I. Timoshin, A. Khlunov, O. Khomyakov, The theoretical analysis of sintering of oxide nuclear fuel tablets, Nuclear Physics and Engineering 1, 5 (2010) 398-407.

DOI: https://doi.org/10.1016/j.jnucmat.2012.07.050

[25] J. F. Marin and P. Contamin, Uranium and oxygen self-diffusion in UO2, Journal of Nuclear Materials 30, 1 (1969) 16-25.

DOI: https://doi.org/10.1016/0022-3115(69)90164-0

[26] E. Moore, C. Guéneau, J. -P. Crocombette, Diffusion model of the non-stoichiometric uranium dioxide, Journal of Solid State Chemistry 203 (2013) 145-153.

DOI: https://doi.org/10.1016/j.jssc.2013.04.006