On the Analysis of Composition Profiles in Binary Single-Phase Diffusion Couples: Systems with a Strong Compositional Dependence of the Interdiffusion Coefficient


Article Preview

Diffusion couple technique is an efficient tool for the estimating the chemical diffusion coefficients. Typical experimental uncertainties of the composition profile measurements complicate a correct determination of the interdiffusion coefficients via the standard Boltzmann-Matano, Sauer-Freise or the den Broeder methods, especially for systems with a strong compositional dependence of the interdiffusion coefficient. A new approach for reliable fitting of the experimental profiles with an improved behavior at both ends of the diffusion couple is proposed and tested against the experimental data on chemical diffusion in the system Fe-Ga. An extension of the approach for reliable description of the up-hill diffusion phenomenon in multicomponent systems is presented.



Edited by:

Prof. Eugen Rabkin, Amy Novick-Cohen, Leonid Klinger and Nachum Frage




B. Tas Kavakbasi et al., "On the Analysis of Composition Profiles in Binary Single-Phase Diffusion Couples: Systems with a Strong Compositional Dependence of the Interdiffusion Coefficient", Defect and Diffusion Forum, Vol. 383, pp. 23-30, 2018

Online since:

February 2018




* - Corresponding Author

[1] A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer Int. Publ. Switzerland (2014).

DOI: https://doi.org/10.1007/978-3-319-07461-0

[2] A. Paul, A pseudo binary approach to study interdiffusion and the Kirkendall effect in multicomponent systems, Philos. Mag. 93 (2013) 2297-2315.

[3] C. Matano, Jap. J. Phys. 8 (1933) 109.

[4] L. Boltzmann, Ann. Physik. 53 (1894) 959.

[5] S. Santra, A. Paul, Estimation of intrinsic diffusion coefficients in a pseudo-binary diffusion couple, Scripta Mater. 103 (2015) 18-21.

DOI: https://doi.org/10.1016/j.scriptamat.2015.02.027

[6] F. Sauer and V. Freise, Z. Electrochem. 66 (1962) 353.

[7] F.J.A. den Broeder, Scripta Met. 3 (1969) 321.

[8] T.B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, (2001).

[9] R.R. Kapoor, T.W. Eagar, Improving the calculation of interdiffusion coefficients, Metall Trans A 21 (1989) 3039-3047.

DOI: https://doi.org/10.1007/bf02647302

[10] D. Kuang, D. Liu, W. Chen, Z. Lu, L. Zhang, Y. Du, Z. Jin, C. Tang, Int. J. Mater. Res. 107 (2016) 597-604.

[11] J. Chen, L. Zhang, J. Zhong, W. Chen, Y. Du, JALCOM, 688 (2016) 320-328.

[12] J. Li, W. Chen, D. Liu, W. Sun, L. Zhang, Y. Du, H. Xu, J. Phase Equilib. Diff. 34 (2013) 484-492.

[13] M.A. Dayananda, Analysis of multicomponent diffusion couples for interdiffusion fluxes and interdiffusion coefficients, J Phase Equilibria Diffusion 26 (2005) 441-446.

DOI: https://doi.org/10.1361/154770305x66493

[14] K. Cheng, D. Liu, L. Zhang, Y. Du, S. Liu, C. Tang, JALCOM 579 (2013) 124-131.

[15] D. Liu, L. Zhang, Y. Du, H. Xu, Z. Jin, JALCOM 566 (2013) 156-163.

[16] D. Gaertner, K. Abrahams, V. Esin, I. Steinbach, G. Wilde, S.V. Divinski, Chemical diffusion in high-entropy alloys, unpublished.

[17] M. Vaidya, S. Trubel, B.S. Murty, G. Wilde, S.V. Divinski, Ni tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys, JALCOM 688 (2016) 994-1001.

DOI: https://doi.org/10.1016/j.jallcom.2016.07.239

[18] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in CoeCreFeeMneNi high-entropy alloys, Acta Mater 61 (2013) 4887-4897.

DOI: https://doi.org/10.1016/j.actamat.2013.04.058