High-Throughput Determination of Interdiffusivities for Ni-Al-Cr Alloys at 1173 K through a Combination of Diffusion Multiple and Numerical Inverse Method

Abstract:

Article Preview

In this report, a combination of the diffusion multiple technique and the recently developed numerical inverse method was employed for a high–throughput determination of interdiffusivity matrices in Ni–Al–Cr alloys. A face–centered cubic (fcc) quinary Ni–Al–Cr diffusion multiple at 1173 K was carefully prepared by means of the hot–pressing technique. Based on the composition profiles measured by the field emission electron probe micro analysis (FE–EPMA), the composition–dependent interdiffusivity matrices in ternary Ni–rich Ni–Al–Cr system at 1173 K were then efficiently determined using the numerical inverse method.

Info:

Periodical:

Edited by:

Prof. Eugen Rabkin, Amy Novick-Cohen, Leonid Klinger and Nachum Frage

Pages:

36-42

Citation:

W. M. Chen and L. J. Zhang, "High-Throughput Determination of Interdiffusivities for Ni-Al-Cr Alloys at 1173 K through a Combination of Diffusion Multiple and Numerical Inverse Method", Defect and Diffusion Forum, Vol. 383, pp. 36-42, 2018

Online since:

February 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] E. Fleischmann, M.K. Miller, E. Affeldt, U. Glatzel, Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single–crystal nickel–based superalloys, Acta Mater. 87 (2015) 350–356.

DOI: https://doi.org/10.1016/j.actamat.2014.12.011

[2] D.M. Collins, D.J. Crudden, E. Alabort, T. Connolleyc, R.C. Reed, Time–resolved synchrotron diffractometry of phase transformations in high strength nickel–based superalloys, Acta Mater. 94 (2015) 244–256.

DOI: https://doi.org/10.1016/j.actamat.2015.04.046

[3] K. Matuszewski, R. Rettig, H. Matysiak, Z. Peng, I. Povstugar, P. Choi, J. Mueller, D. Raabe, E. Spiecker, K.J. Kurzydlowski, R.F. Singer, Acta Mater. 95 (2015) 274–283.

DOI: https://doi.org/10.1016/j.actamat.2015.05.033

[4] B. Burton, G.L. Reynolds, In defense of diffusional creep, Mater. Sci. Eng. A 191 (1995) 135–141.

[5] L. Zhang, M. Stratmann, Y. Du, B. Sundman, I. Steinbach, Incorporationg the CALPHAD sublattice approach of ordering into the phase–field model with finite interface dissipation, Acta Mater. 88 (2015)156–169.

DOI: https://doi.org/10.1016/j.actamat.2014.11.037

[6] J.A. Nesbitt, R.W. Heckel, Interdiffusion in Ni–rich, Ni–Cr–Al alloys at 1100 and 1200 °C: Part II. Diffusion coefficients and predicted concentration profiles, Metall. Trans. A 18 (1987) 2075–(2086).

DOI: https://doi.org/10.1007/bf02647079

[7] M.S. Thompson, J.E. Morral, A.D. Romig, Jr., Applications of the square root diffusivity to diffusion in Ni–Al–Cr alloys, Metall. Trans. A 21 (1990) 2679–2684.

DOI: https://doi.org/10.1007/bf02646063

[8] N. Garimella, M.P. Brady, Y. Sohn, Interdiffusion in g (Face–Centered Cubic) Ni–Cr–X (X = Al, Si, Ge, or Pd) Alloys at 900 °C, J. Phase Equilib. Diffus. 27 (2006) 665–670.

DOI: https://doi.org/10.1361/154770306x153710

[9] N. Garimella, M.P. Brady, Y. Sohn, Interdiffusion in (fcc) Ni–Cr–X (X = Al, Si, Ge or Pd) Alloys at 700 °C, Defect Diffus. 266 (2007) 191–198.

DOI: https://doi.org/10.4028/www.scientific.net/ddf.266.191

[10] L. Zhang, Q. Chen, CALPHAD-type modeling of diffusion kinetics in multicomponent alloys, in A. Paul, S. Divinski (Eds. ), Handbook of Solid State Diffusion: Volume 1, Elsevier, 2017, p.321–362.

DOI: https://doi.org/10.1016/b978-0-12-804287-8.00006-3

[11] J. –C. Zhao, M.R. Jackson, L.A. Peluso, L.N. Brewer, A diffusion–multiple approach for mapping phase diagrams, hardness, and elastic Modulus, JOM 54 (2002) 42–45.

DOI: https://doi.org/10.1007/bf02700985

[12] J. –C. Zhao, X. Zheng, D.G. Cahill, High–throughput diffusion multiples. Mater. Today 8 (2005) 28–37.

[13] W. Chen, L. Zhang, Y. Du, C. Tang, B. Huang, A pragmatic method to determine the composition–dependent interdiffusivities in ternary systems by using a single diffusion couple, Scripta Mater. 90–91 (2014) 53–56.

DOI: https://doi.org/10.1016/j.scriptamat.2014.07.016

[14] W. Chen, J. Zhong, L. Zhang, An augmented numerical inverse method for determining the composition–dependent interdiffusivities in alloy systems by using a single diffusion couple, MRS Comm. 6 (2016) 295–300.

DOI: https://doi.org/10.1557/mrc.2016.21

[15] H. Xu, W. Chen, L. Zhang, Y. Du, C. Tang, High–throughput determination of the composition–dependent interdiffusivities in Cu–rich fcc Cu–Ag–Sn alloys at 1073 K, J. Alloys Compd. 644 (2015) 687–693.

DOI: https://doi.org/10.1016/j.jallcom.2015.05.030

[16] J. Chen, L. Zhang, J. Zhong, W. Chen, Y. Du, High–throughput measurement of the composition–dependent interdiffusivity matrices in Ni–rich fcc Ni–Al–Ta alloys at elevated temperatures, J. Alloys Compd. 688 (2016) 320–328.

DOI: https://doi.org/10.1016/j.jallcom.2016.07.003

[17] Y. Liu, W. Chen, Y. Tang, Y. Du, L. Zhang, Application of pragmatic numerical inverse method in computation of interdiffusion coefficients in Al ternary alloys, Acta Metall. Sinica 52 (2016) 1009–1016.

[18] S. Deng, W. Chen, J. Zhong, L. Zhang, Y. Du, L. Chen, Diffusion study in bcc_A2 Fe–Mn–Si system: Experimental measurement and CALPHAD assessment, CALPHAD 56 (2017) 230–240.

DOI: https://doi.org/10.1016/j.calphad.2017.01.008

[19] W. Chen, L. Zhang, High–throughput determination of interdiffusion coefficients for Co–Cr–Fe–Mn–Ni high–entropy alloys, J. Phase Equilib. Diffus. 38 (2017) 457–465.

DOI: https://doi.org/10.1007/s11669-017-0569-0

[20] W. Chen, Q. Li, L. Zhang, A novel approach to eliminate the effect of external stress on interdiffusivity measurement, Materials 10 (2017) 961.

DOI: https://doi.org/10.3390/ma10080961

[21] R. Bouchet, R. Mevrel, A numerical inverse method for calculating the interdiffusion coefficients along a diffusion path in ternary systems, Acta Mater. 50 (2002) 4887–4900.

DOI: https://doi.org/10.1016/s1359-6454(02)00358-0

[22] A.V. Jaques, J.C. LaCombe, A stable and efficient regression approach for determination of coefficients in linear multicomponent diffusion, J. Phase Equilib. Diffus. 33 (2012) 181–188.

DOI: https://doi.org/10.1007/s11669-012-0028-x

[23] J.R. Manning, Diffusion and the kirkendall shift in binary alloys, Acta Metall. 15 (1967) 817–826.

DOI: https://doi.org/10.1016/0001-6160(67)90363-x

[24] W. Chen, L. Zhang, Y. Du, B. Huang, Viscosity and diffusivity in melts: from unary to multicomponent systems, Philos. Mag. 94 (2014) 1552–1577.

DOI: https://doi.org/10.1080/14786435.2014.890755

[25] N. Ta, L. Zhang, Y. Tang, W. Chen, Y. Du, Effect of temperature gradient on microstructure evolution in Ni–Al–Cr bond coat/substrate systems: A phase–field study, Surf. Coat Technol. 261 (2015) 364–374.

DOI: https://doi.org/10.1016/j.calphad.2015.01.189

[26] M.A. Dayananda, An analysis of concentration profiles of fluxes, diffusion depths, and zero–flux planes in multicomponent diffusion, Metall. Trans. A 14 (1983) 1851–1858.

DOI: https://doi.org/10.1007/bf02645555

[27] A. Ben Abdellah, J.G. Gasser, K. Bouziane, B. Grosdidier, M. Busaidi, Experimental procedure to determine the interdiffusion coefficient of miscibility gap liquid alloys: Case of GaPb system, Phys. Rev. B 76 (2007) 174203.

DOI: https://doi.org/10.1103/physrevb.76.174203

[28] J. Lechelle, S. Noyau, L. Aufore, A. Arredondo, E. Audubert, Volume interdiffusion coefficient and uncertainty assessment for polycrystalline materials, diffusion–fundamentals. org 17 (2012) 1–39.

[29] L. Zhang, Y. Du, Q. Chen, I. Steinbach, B. Huang, Atomic mobilities and diffusivities in the fcc, L12 and B2 phases of the Ni–Al system, Int. J. Mat. Res. 101 (2010) 1461–1475.

DOI: https://doi.org/10.3139/146.110428

[30] A. Engstrӧm, J. Ågren, Assessment of diffusional mobilities in fcc–centered cubic Ni–Cr–Al alloys, Z. Metallkd. 87 (1996) 92–97.