Tracer Diffusion and Ordering in FCC Structures - Stochastic Kinetic Mean-Field Method vs. Kinetic Monte Carlo

Abstract:

Article Preview

Recently developed method of atomistic modelling (SKMF) is applied to order-disorder transitions in FCC alloys and to tracer diffusion in the ordered L12 structure. Results correlate with Kinetic Mote-Carlo modelling. Difference of diffusion activation energies of two species is found. Activation energy of ordering is close to one of minority component diffusion.

Info:

Periodical:

Edited by:

Prof. Eugen Rabkin, Amy Novick-Cohen, Leonid Klinger and Nachum Frage

Pages:

59-65

Citation:

V. Bezpalchuk et al., "Tracer Diffusion and Ordering in FCC Structures - Stochastic Kinetic Mean-Field Method vs. Kinetic Monte Carlo", Defect and Diffusion Forum, Vol. 383, pp. 59-65, 2018

Online since:

February 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] G. Martin, Atomic mobility in Cahn's diffusion model, Phys. Rev. B, 41 (1990) 2279.

[2] Z. Erdélyi, I. A. Szabó & D. L. Beke, Interface sharpening instead of broadening by diffusion in ideal binary alloys, Phys. rev. lett. 89 (2002) 165901.

DOI: https://doi.org/10.1103/physrevlett.89.165901

[3] Z. Erdélyi, M. Sladecek, L. M. Stadler, I. Zizak, G. A. Langer, M. Kis-Varga & B. Sepiol, Transient interface sharpening in miscible alloys, Science 306 (2004) 1913-(1915).

DOI: https://doi.org/10.1126/science.1104400

[4] Z. Erdélyi, G. L. Katona & D. L. Beke, Nonparabolic nanoscale shift of phase boundaries in binary systems with restricted solubility, Phys. Rev. B 69 (2004) 113407.

DOI: https://doi.org/10.1103/physrevb.69.113407

[5] Z. Erdélyi, D. L. Beke & A. Taranovskyy, Dissolution and off-stoichiometric formation of compound layers in solid state reactions, Applied Physics Letters, 92 (2008) 133110.

DOI: https://doi.org/10.1063/1.2905334

[6] N. V. Storozhuk, K. V. Sopiga & A. M. Gusak, Mean-field and quasi-phase-field models of nucleation and phase competition in reactive diffusion. Phil. Mag. 93 (2013) 1999-(2012).

DOI: https://doi.org/10.1080/14786435.2012.746793

[7] Z. Erdélyi, M. Pasichnyy, V. Bezpalchuk, J. J. Tomán, B. Gajdics & A. M. Gusak, Stochastic kinetic mean field model, Computer Physics Communications  204 (2016) 31-37.

DOI: https://doi.org/10.1016/j.cpc.2016.03.003

[8] V. M. Bezpalchuk, M. O. Pasichnyy, and A. M. Gusak, Application of a Stochastic Kinetic Mean Field (SKMF) Method to Ordering Substitutional Atoms in Macro- and Nanosize F.C.C. Lattices, Metallofiz. Noveishie Tekhnol. 38 (2016) 1135—1144.

DOI: https://doi.org/10.15407/mfint.38.09.1135

[9] P. Oramus, R. Kozubski, V. Pierron-Bohnes, M. C. Cadeville & W. Pfeiler, Monte Carlo computer simulation of order-order kinetics in the L12-ordered Ni3Al binary system, Phys. Rev. B, 63 (2001) 174109.

DOI: https://doi.org/10.1103/physrevb.63.174109

[10] S. T. Frank, U. Södervall & C. Herzig, Self‐Diffusion of Ni in Single and Polycrystals of Ni3Al. A Study of SIMS and Radiotracer Analysis, Physica status solidi (b), 191 (1995) 45-55.

DOI: https://doi.org/10.1002/pssb.2221910105

[11] R. Kozubski, Long-range order kinetics in Ni3Al-based intermetallic compounds with L12-type superstructure, Progress in materials science, 41 (1997) 1-59.

DOI: https://doi.org/10.1016/s0079-6425(97)00002-9

[12] S. Divinski, S. Frank, U. Södervall, & C. Herzig, Solute diffusion of Al-substituting elements in Ni3Al and the diffusion mechanism of the minority component, Acta Materialia, 46 (1998) 4369-4380.

DOI: https://doi.org/10.1016/s1359-6454(98)00109-8

Fetching data from Crossref.
This may take some time to load.