Enhanced Strength and Ductility of an Ultrafine-Grained Ti Alloy Processed by HPT

Abstract:

Article Preview

We studied the effect of the ultrafine-grained (UFG) structure parameters of the titanium alloy Ti-6Al-4V, processed by high-presure torsion (HPT), on its mechanical properties. The fabrication of alloy with a high strength (σв ~ 1700 MPa) and enhanced ductility was demonstrated. The fatique behavior of UFG alloy was also examined.

Info:

Periodical:

Edited by:

Goroh Itoh, Rustam Kaibyshev, Eric M. Taleff, Marina Tikhonova and Dr. Eiichi Sato

Pages:

331-336

Citation:

R. R. Valiev et al., "Enhanced Strength and Ductility of an Ultrafine-Grained Ti Alloy Processed by HPT", Defect and Diffusion Forum, Vol. 385, pp. 331-336, 2018

Online since:

July 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] I.A. Ovid'ko, R.Z. Valiev, Y.T. Zhu, Review on superior strength and enhanced ductility of metallic nanomaterials, Progress in Materials Science 94 (2018), pp.462-540.

[2] R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, 2014 by John Wiley & Sons, Inc., 456 pages.

[3] H. Shahmir, T.G. Langdon. Using heat treatments, high-pressure torsion and post-deformation annealing to optimize the properties of Ti-6Al-4V alloys. Acta Materialia (2017) Vol.141, pp.419-426.

DOI: https://doi.org/10.1016/j.actamat.2017.09.018

[4] I.P. Semenova, G.I. Raab, R.Z. Valiev. Nanostructured Ti alloys: new developments and application prospects. Nanotechnologies in Russia (2014) Vol. 9, №5-6 pp.79-90.

DOI: https://doi.org/10.1134/s199507801403015x

[5] A.Y. Khereddine, F. Hadj Larbi, H. Azzeddine, T. Baudin, F. Brisset, A. Helbert, M. Mathon, M. Kawasaki, D. Bradai, T.G. Langdon, Microstructures and textures of a Cu–Ni–Si alloy processed by high-pressure torsion, J. Alloy. Compd. 574 (2013).

DOI: https://doi.org/10.1016/j.jallcom.2013.05.051

[6] A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008) 893–979.

DOI: https://doi.org/10.1016/j.pmatsci.2008.03.002

[7] I.V. Lomakin A.R. Arutyunyan, R.R. Valiev, et al. Exp Tech (2017). https://doi.org/10.1007/s40799-017-0229-7 Experimental Techniques.

[8] A. Yu. Vinogradov and S. R. Agnew, Fatigue of Nanocrystalline Materials, in: Encyclopedia of Nanoscience and Nanotechnology, Marcel-Dekker, New York, USA 2004, p.2269–2288.