Comparative Characteristics of GaAs and InAs Langmuir Evaporation - Monte Carlo Simulation


Article Preview

The process of GaAs and InAs substrates high-temperature annealing under the Langmuir evaporation conditions is studied by Monte Carlo simulation. The temperature range of gallium arsenide and indium arsenide congruent and incongruent evaporation are determined. It was demonstrated that the congruent evaporation temperature Tc is sensitive to the vicinal surface terrace width. The decrease of the terrace width results in a decrease in the congruent evaporation temperature. The Ga and In diffusion lengths along the (111)A and (111)B surfaces at congruent temperatures are estimated. The surface morphology transformation kinetic during high-temperature annealing is analyzed.



Edited by:

Nikolay G. Galkin




A. A. Spirina et al., "Comparative Characteristics of GaAs and InAs Langmuir Evaporation - Monte Carlo Simulation", Defect and Diffusion Forum, Vol. 386, pp. 27-32, 2018

Online since:

September 2018




* - Corresponding Author

[1] C.Y. Lou, G.A. Somorjai, Studies of the vaporization mechanism of gallium arsenide single crystals, J. of Chem. Phys. 55 (1971) 4554-4565.


[2] B. Goldshtein, D.J. Stozak, V.S. Ban, Langmuir evaporation from the (100), (111A) and (111B) faces of GaAs, Surf. Sci. 57 (1976) 733-740.


[3] S. Kanjanachuchai, C. Euaruksakul, Self-Running Ga Droplets on GaAs (111)A and (111)B Surfaces, ACS Appl. Mater. Interfaces 5 (2013) 7709-7713.


[4] Ju. Huhryanski, L. Veremjanina, I. Kombarova, I. Nikishina, О. Sysoev, Kinetics of Langmuir evaporation of indium phosphide and arsenide components, J. Phys. Chem. 71 (1997) 870-874.

[5] S. Kanjanachuchai, P. Photongkam, Dislocation-guided self-running droplets, Cryst. Growth Des. 15 (2015) 14-19.


[6] J. Jian-yun Shen, C. Chatillon, Thermodynamic calculations of congruent vaporization in III–V systems; Applications to the In-As, Ga-As and Ga-In-As systems, J. Cryst. Growth 106 (1990) 543-552.


[7] M. Panish, J. Arthur, Phase equilibria and vapor pressures of the system In+P, J. Chemical Thermodynamics 2 (1970) 299-318.


[8] А.N. Nesmeyanov, The vapor pressure of the chemical elements, Moscow, 1961, pp.204-206 (in rus.).

[9] C. Pupp, J. Murray, R. Pottie, Vapour pressures of arsenic over InAs(c) and GaAs(c). The enthalpies of formation of InAs(c) and GaAs(c), J. Chem. Thermodynamics 6 (1974) 123-134.


[10] A. Zverev, C. Zinchenko, N. Shwartz, Z. Yanovitskaja, A Monte Carlo simulation of the processes of nanostructures growth: The time-scale event-scheduling algorithm, Nanotech. in Russia 4 (2009) 215-224.


[11] A.A. Spirina, A.G. Nastovjak, S.V. Usenkov, N.L. Shwartz, Lattice Monte Carlo model of Langmuir evaporation of AIIIBV semiconductors: submitted to Journal Computational Technologies (in russian) (2018).

[12] M. Vasilenko, I. Neizvestny, N. Shwartz, Formation of GaAs nanostructures by droplet epitaxy — Monte Carlo simulation, Comput. Mat. Sci. 102 (2015) 286-292.


[13] R.N. Hall, Solubility of III–V compound Semiconductors in column III liquids, J. Electrochem. Soc. 110 (1963) 385-388.


[14] A.A. Spirina, A.G. Nastovjak, N.L. Shwartz, Influence of GaAs substrates properties on the congruent evaporation temperature, J. Phys.: Conf. Ser. 993 (2018) 012011.


[15] H.C. Gatos, M.C. Lavine, Characteristics of the {111} Surfaces of the III-V Intermetallic Compounds, J. Electrochem. Society, 107 (1960) 427-433.