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Abstract. The critical resolved shear strength 7.5 0of pure metals is given by the Peierls-Nabarro
equation; impurities or alloying elements will significantly increase t.gss. Additional strength is
introduced by strain hardening (SH), the grain size effect (GSE), precipitates and particle dispersion.
The combination of these mechanisms is generally described in an additive manner, which can be
justified by the Taylor expansion of a multivariate function. This approach is highly empirical and
involves extensive parameter fitting. The Kocks-Mecking model (KM) and discrete dislocation
dynamics show that SH is mainly due to forest effects (latent hardening). Consequently, the main
explanation for alloy strength must be sought in the resistance against dislocation percolation through
a field of obstacles with different strengths, with the slip length limited by the grain diameter. This
hypothesis is explored by reviving early graphical simulations to the percolation problem by
introducing a grain boundary and variable obstacle strength in an efficient computer program. Such
simulations and theoretical considerations demonstrate the limitations of the additive description of
combined hardening. An alternative approximation is proposed, based on the statistical analysis of
dislocation percolation, dislocation junctions and dislocation-grain boundary interaction.

Introduction

As noted by Cotrell [1,2], strain hardening was the first problem to be attempted by dislocation
theory and may be the last to be solved. This statement refers to Taylor’s first paper on dislocations
[3], where he envisaged and equilibrium configuration consisting of a regular lattice of straight
dislocation lines kept in place by their stress fields. Starting with the earliest direct observations of
dislocations in alloys [4,5], it soon became clear that regular lattices were nowhere to be found, but
the Taylor lattice was still considered as an explanation for strain hardening in the 1980s [6] and a
large body of work on the statistical mechanics of dislocations is based on distributed densities of
straight dislocations interacting through their stress fields [7-12].

Given the entangled nature of dislocation configurations found in deformed metallic materials,
Saada [13], Schoek and Frydman [14] as well as Dupuy and Fivel [15] focused on the strength of
dislocation junctions pinning dislocation sections as the main source of strain hardening. A first
graphical attempt to analyse dislocation percolation through a field of stable dislocation junctions was
presented by Kocks [16] and more extensive computer simulations of this process were made
available in the 1990s [17,18], eventually leading to discrete dislocation dynamics software which
accounts for both stress interaction and intersection between dislocations [19,20].

Combined hardening includes the effects of the lattice friction (Peierls stress 7p), solid solution,
grain size (dg) and dislocation density (pg). It is often approached by a simple superposition of
effects, which can be justified as follows by considering an arbitrary, differentiable function of n
variables, expanded in a Taylor series at the origin:
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then, for the yield strength in shear (7)) and setting x;, = pé/ 2, X, = dg_ 2 and x3 =X 5142, with Xg¢

the atomic concentration of solutes, one finds:
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where u is the shear modulus, a a constant with a value between 0.2 and 0.5 [2,21,22]. The term in
pé/ ? is the classical Taylor equation [3] and can be rigorously proven either by dimensional analysis
[23] or by an evolution equation for the dislocation density as a function of stress [24]. kyp is the
Hall-Petch constant and Css a constant which depends on the lattice misfit of the solute atom and the
elastic properties of matrix and solute.

Similarly, the increase of dislocation density with the shear strain y has been described as [25]:

dpa _ kipa ks ke 1 1 (ft)
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The terms containing the fitting parameters k; and k, are the storage and annihilation terms of the
original KM model. Using dimensional and statistical arguments, they can be rigorously proven
[23,25,26]. Adding the term in k5 defines the Kocks-Mecking-Estrin model; the addition of this term
is purely empirical but justified by Eq. 1, as is the fifth term, which accounts for the spacing s between
the sample surfaces (b is the magnitude of the Burgers vector). The sixth term introduces the effect
of twins, with d; the distance between the twins and f; the twin fraction. To convert Egs. (2) and (3)
into expression for the yield strength and logarithmic strains in uniaxial tension, one writes o, = MT,,
and € = y/M, with M the average Taylor factor for the material.

The superposition of effects is widely accepted. It works because it represents a form of the Taylor
expansion of a function of multiple variables. It does not present a method to calculate the values of
the partial derivatives in Eq. (1), which must be fitted. Therefore, the approach is not predictive and
Egs. (2) and (3) require extensive experimentation to determine these parameters. By adding more
parameters, better fits can always be obtained but predictivity is lost. Extrapolation to ranges which
are not covered by experiments is risky.

This short paper will explore the existing theoretical calculations which provide an alternative,
physics-based approach for simple superposition [23,24,27]. The essential difference between weak
and strong obstacles will be explained and their effects explored by some simple simulations. The
strong obstacles are accounted for by the theory; weak obstacles can be lumped together in a friction
term, but their quantitative analysis, based on arguments of stochastic geometry, must be studied into
more detail in future work.

Theoretical Results

The behaviour of a dislocation which is pinned in the slip plane by a row of obstacles is shown in
Fig. 1. A general expression for the line tension of a dislocation is given by:

S = “” (cos L v"’) 1n;i0 ~ agub? (4)
where 1/) is the angle between the dislocation line and the Burgers vector, R is an upper cut-off radius
and 1, a lower cut-off. R is an artifact caused by considering infinite dislocation lines, it does not
appear when closed dislocation loops are considered [28,29]. 1, is closely connected to the width of
the dislocation core. The second equality lumps all geometrical constants in a single parameter «,
defining the isotropic line tension approach. It shall be noted that « is not equal to « in Eq. (2) [24].
Under this assumption [13,16], the dislocation segment will bow out between the obstacles in the
form of a circular arc with radius 7; under the effect of a resolved shear stress t:
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The force on an obstacle is given by:

F =Ssinf, + Ssin, = ub?ay(sin 6, + sin6,) = (S;Z—ZZ)T (6)
0
The value of sin 8 < 1. If the obstacle fails before sin @ = 1, it is called a weak obstacle. Weak
dislocation junctions will unzip [13-15]. Weak precipitates will be cut. If sin & = 1, the moving
dislocation will bow-out, remaining pinned on the original obstacle. This corresponds to the Orowan-
mechanism for dispersion hardening.

Once a weak obstacle is passed, it no longer affects the length of the stored dislocations but the
energy stored in the pinned configuration is liberated and dissipates in the form of phonons [30]. The
corresponding transformation of mechanical energy into heat is a friction phenomenon. Strong
obstacles modify the length distribution of the stored dislocations. The density of solute atoms,
precipitates and particles (including non-shearable precipitates) is constant; the density of weak and
strong dislocation junctions increases during strain hardening.

If the spatial distribution of the obstacles is defined by a Poisson point process, the length
distribution of the dislocation segments can be addressed by closed-form calculations [24].
Considering that, at a given stress 7, no segment can be longer than s; = 2r;, it can be written that
the number of dislocation segments released upon an increase of T is [24]:

dn = — 2 ps(s;|0)ds, (7)

ps 1s the dislocation density in each of the slip planes, which can be proven to be proportional to
the amount of slip in this plane. (s) is the average segment length and ps(s;|t) is the probability
density of the segment lengths at a given value of 7. Each bow-out event causes a sequence of new
bow-outs which can be analysed by classical probability calculus [24]. The result is:

e = 1200 [oepy K (” = wcpd) (8)

The full form of K(+) takes a complete page and is given in the appendix of Ref. [24]; ¢, is the
fraction of the dislocations that can form stable junctions with the dislocations in the slip system. It

was proven that the Taylor equation 7,, = pba,/p4 solves this equation and that this solution is unique
[23]. Non-shearable precipitates, with an effective slip plane density p,, modify the evolution as:
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The grain size effect can be accounted for by making a balance between the dislocations
originating at the grain boundaries (GBs) and in the substructure and the ones absorbed by the GBs
or stored/annihilated in the substructure [27]. Under the assumption that the storage and annihilation
sites define independent Poisson point processes along the dislocation path, it was shown that:

dpg _ 1 (klx/(l’cpd_kzbfpspd) (10)
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where (1), the expected value of the slip length in presence of GBs, can be obtained by probability
calculus [27]. It was found that:
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The result is slightly generalised as compared to ref. [27], in the sense that in both the storage term
and the annihilation term, the fraction of the dislocations crossing the slip plane (¢.) and the fraction
inside the slip plane (¢;) are considered. Notice that g5 # 1 — ¢, because not all combinations of
slip systems produce stable dislocation junctions [15,19].

With Eq. (9), the Taylor equation is no longer an exact solution. A numerical solution still provides
a relationship between p; and t. Under the assumption that precipitates are randomly and
independently distributed in the slip plane, Eqgs. (10) and (11) can be recombined as:

dpg VPcPdtPp 1 (ki JOcpatpp—K2b@spa
— =k ————kypspq +— 12
1 2%¥sFd ( )
ay b bdg \k1,/@cpatpptkz2bpspa

Egs. (9) and (12) provide a set of two non-linear ordinary differential equations describing the
evolution of the dislocation density on each slip system. While ¢g and ¢, are proportional to the
activity of the slip systems as found from crystal plasticity models in the case of pure strain hardening,
here it follows that less-active slip systems will have a higher strain hardening rate, as ¢y is lower
and ¢, higher. Consequently, the set of equations must be solved for all slip systems simultaneously.

Simulations

To explore the relative importance of weak vs. strong obstacles, a software package was developed
in which, after bow-out or unzipping, the dislocation samples the next closest obstacle to expand
through the random field of points. This field is delimited by a circle of impenetrable obstacles
defining the GB. The dislocation density is the inverse of the number of points n,, in the Poisson
process and value of 7; defines the stress through Eq. (5). A higher value of n,, corresponds to a higher
dislocation density or a larger grain size. The goal of these simulations is to gain an insight into the
role of weak obstacles. To do so, their fraction is defined as f,, and their strength, defined as sin 6,
follows a uniform distribution on [0,1]. Examples for f;, = 0 and 1 are given in Fig. 1.

b

Fig. 1. a) Geometry showing two circular dislocation segments blocked by a weak obstacle. The force
on the obstacle is equal to the sum of the line tension vectors. Cutting of the obstacle will allow the
dislocation to expand to the dashed configuration. b) Example of the percolation of a dislocation loop
in a field of strong obstacles. ¢) With weak obstacles, the stored dislocation length is lower.



Defect and Diffusion Forum Vol.

446

17

2.0x10

1.5x10

1.0x10

5.0x10"

2.0x10

rgPa)

8

8

0.0

rsPa)

0y=256m; ¢,=2/3; ps=1/3

0g=256m; ¢:=1/3; ¢s=1/3

r$Pa)
2.0x10

dg=16um; ¢.=2/3; ps=1/3

1.5x10°

1.0x10°

5.0x10

0.0 0.5 1.0 1.5 20 25 3.0 Y

rgPa)
20x10 dy=160m; @.=1/3; 9,=1/3

o(Pa)

2.0x10

dy=4pm; @.=2/3; ps=1/3

1.5x10°

1.0x10°

5.0x10

0.0 0.5 1.0 15 2.0 25 3.0 Y

rgPa)
2.0x10

1.5x10° 1.5x10° 1.5x10°

1.0x10° 1.0x10° 1.0x10°
_Pp=0 —pp=0
J— 71012

5.0x107 5.0x107 P 5.0x107
— pp=10" — pp=10"
pp=10" pp=10"

00 05 10 15 20 25 30 00 05 10 15 20 25 30" 00 05 10 15 20 25 30"

Fig. 2. Examples of T — y curves for different grain sizes and particle densities.

To test the result of Egs. (9) and (12), a fixed value of ¢, = 1/3 is used and ¢, = 2/3 and
1/3 are tested, corresponding to three slip systems with equal activity and 100% and 50% strong
junctions. No lattice friction is considered, which means that weak obstacles are not included in the
analysis. The results show that the strain hardening rate is higher in small grains and that
particle strengthening is less pronounced, clearly illustrating that strengthening effects are not
additive.

Conclusions

A brief review was provided on the development of the concept of statistical micromechanics to
describe the combined effects of hardening mechanisms in metals and alloys. An essential distinction
must be made between strong and weak obstacles, with the latter contributing to the lattice friction
and the former collectively contributing to strain hardening, in a non-additive manner. The theoretical
analysis of strong obstacles and grain boundaries leads to a set of ordinary differential equations
which produce realistic stress-strain curves and naturally including multi-slip in crystal plasticity.
To eliminate the empirical approximation to lattice friction, the study of weak obstacles must be
refined.
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