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Abstract. The critical resolved shear strength 𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 of pure metals is given by the Peierls-Nabarro 
equation; impurities or alloying elements will significantly increase 𝜏𝜏𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Additional strength is 
introduced by strain hardening (SH), the grain size effect (GSE), precipitates and particle dispersion. 
The combination of these mechanisms is generally described in an additive manner, which can be 
justified by the Taylor expansion of a multivariate function. This approach is highly empirical and 
involves extensive parameter fitting. The Kocks-Mecking model (KM) and discrete dislocation 
dynamics show that SH is mainly due to forest effects (latent hardening). Consequently, the main 
explanation for alloy strength must be sought in the resistance against dislocation percolation through 
a field of obstacles with different strengths, with the slip length limited by the grain diameter. This 
hypothesis is explored by reviving early graphical simulations to the percolation problem by 
introducing a grain boundary and variable obstacle strength in an efficient computer program. Such 
simulations and theoretical considerations demonstrate the limitations of the additive description of 
combined hardening. An alternative approximation is proposed, based on the statistical analysis of 
dislocation percolation, dislocation junctions and dislocation-grain boundary interaction.  

Introduction 
As noted by Cotrell [1,2], strain hardening was the first problem to be attempted by dislocation 

theory and may be the last to be solved. This statement refers to Taylor’s first paper on dislocations 
[3], where he envisaged and equilibrium configuration consisting of a regular lattice of straight 
dislocation lines kept in place by their stress fields. Starting with the earliest direct observations of 
dislocations in alloys [4,5], it soon became clear that regular lattices were nowhere to be found, but 
the Taylor lattice was still considered as an explanation for strain hardening in the 1980s [6] and a 
large body of work on the statistical mechanics of dislocations is based on distributed densities of 
straight dislocations interacting through their stress fields [7-12]. 

Given the entangled nature of dislocation configurations found in deformed metallic materials, 
Saada [13], Schoek and Frydman [14] as well as Dupuy and Fivel [15] focused on the strength of 
dislocation junctions pinning dislocation sections as the main source of strain hardening. A first 
graphical attempt to analyse dislocation percolation through a field of stable dislocation junctions was 
presented by Kocks [16] and more extensive computer simulations of this process were made 
available in the 1990s [17,18], eventually leading to discrete dislocation dynamics software which 
accounts for both stress interaction and intersection between dislocations [19,20]. 

Combined hardening includes the effects of the lattice friction (Peierls stress 𝜏𝜏𝑃𝑃), solid solution, 
grain size (𝑑𝑑𝑔𝑔) and dislocation density (𝜌𝜌𝑑𝑑). It is often approached by a simple superposition of 
effects, which can be justified as follows by considering an arbitrary, differentiable function of n 
variables, expanded in a Taylor series at the origin: 
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𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛) ≈ 𝑓𝑓(0) + 𝜕𝜕𝜎𝜎𝑦𝑦
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then, for the yield strength in shear (𝜏𝜏𝑦𝑦) and setting 𝑥𝑥1 = 𝜌𝜌𝑑𝑑
1/2, 𝑥𝑥2 = 𝑑𝑑𝑔𝑔

−1/2 and 𝑥𝑥3 = 𝑋𝑋𝐶𝐶𝐶𝐶
1/2, with 𝑋𝑋𝐶𝐶𝐶𝐶 

the atomic concentration of solutes, one finds: 

𝜏𝜏𝑦𝑦 = 𝜏𝜏𝑃𝑃 + 𝜇𝜇𝜇𝜇𝜇𝜇�𝜌𝜌𝑑𝑑 + 𝑘𝑘𝐻𝐻𝐻𝐻
�𝑑𝑑𝑔𝑔

+ 𝐶𝐶𝐶𝐶𝐶𝐶�𝑋𝑋𝐶𝐶𝐶𝐶 (2) 

where 𝜇𝜇 is the shear modulus, 𝜇𝜇 a constant with a value between 0.2 and 0.5 [2,21,22]. The term in 
𝜌𝜌𝑑𝑑
1/2 is the classical Taylor equation [3] and can be rigorously proven either by dimensional analysis 

[23] or by an evolution equation for the dislocation density as a function of stress [24]. 𝑘𝑘𝐻𝐻𝑃𝑃 is the 
Hall-Petch constant and 𝐶𝐶𝐶𝐶𝐶𝐶 a constant which depends on the lattice misfit of the solute atom and the 
elastic properties of matrix and solute. 

Similarly, the increase of dislocation density with the shear strain 𝛾𝛾 has been described as [25]: 

𝑑𝑑𝜌𝜌𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘1�𝜌𝜌𝑑𝑑
𝑏𝑏

− 𝑘𝑘2𝜌𝜌𝑑𝑑 + 𝑘𝑘3
𝑑𝑑𝑔𝑔

+ 𝑘𝑘4
𝑙𝑙0
− 1

𝑏𝑏𝑏𝑏
+ 1

2𝑏𝑏𝑑𝑑𝑡𝑡
� 𝑓𝑓𝑡𝑡
1−𝑓𝑓𝑡𝑡

� (3) 

The terms containing the fitting parameters 𝑘𝑘1 and 𝑘𝑘2 are the storage and annihilation terms of the 
original KM model. Using dimensional and statistical arguments, they can be rigorously proven 
[23,25,26]. Adding the term in 𝑘𝑘3 defines the Kocks-Mecking-Estrin model; the addition of this term 
is purely empirical but justified by Eq. 1, as is the fifth term, which accounts for the spacing s between 
the sample surfaces (b is the magnitude of the Burgers vector). The sixth term introduces the effect 
of twins, with 𝑑𝑑𝑡𝑡 the distance between the twins and 𝑓𝑓𝑡𝑡 the twin fraction. To convert Eqs. (2) and (3) 
into expression for the yield strength and logarithmic strains in uniaxial tension, one writes 𝜎𝜎𝑦𝑦 = 𝑀𝑀𝜏𝜏𝑦𝑦 
and 𝜀𝜀 = 𝛾𝛾/𝑀𝑀, with M the average Taylor factor for the material. 

The superposition of effects is widely accepted. It works because it represents a form of the Taylor 
expansion of a function of multiple variables. It does not present a method to calculate the values of 
the partial derivatives in Eq. (1), which must be fitted. Therefore, the approach is not predictive and 
Eqs. (2) and (3) require extensive experimentation to determine these parameters. By adding more 
parameters, better fits can always be obtained but predictivity is lost. Extrapolation to ranges which 
are not covered by experiments is risky. 

This short paper will explore the existing theoretical calculations which provide an alternative, 
physics-based approach for simple superposition [23,24,27]. The essential difference between weak 
and strong obstacles will be explained and their effects explored by some simple simulations. The 
strong obstacles are accounted for by the theory; weak obstacles can be lumped together in a friction 
term, but their quantitative analysis, based on arguments of stochastic geometry, must be studied into 
more detail in future work. 

Theoretical Results  
The behaviour of a dislocation which is pinned in the slip plane by a row of obstacles is shown in 

Fig. 1. A general expression for the line tension of a dislocation is given by: 

𝑆𝑆 = 𝜇𝜇𝑏𝑏2

4𝜋𝜋
�cos2 𝜓𝜓 + sin2 𝜓𝜓

1−𝜈𝜈
� ln 𝐶𝐶

𝑟𝑟0
≈ 𝜇𝜇0𝜇𝜇𝜇𝜇2 (4) 

where 𝜓𝜓 is the angle between the dislocation line and the Burgers vector, R is an upper cut-off radius 
and 𝑟𝑟0 a lower cut-off. R is an artifact caused by considering infinite dislocation lines, it does not 
appear when closed dislocation loops are considered [28,29]. 𝑟𝑟0 is closely connected to the width of 
the dislocation core. The second equality lumps all geometrical constants in a single parameter 𝜇𝜇0, 
defining the isotropic line tension approach. It shall be noted that 𝜇𝜇0 is not equal to 𝜇𝜇 in Eq. (2) [24]. 
Under this assumption [13,16], the dislocation segment will bow out between the obstacles in the 
form of a circular arc with radius 𝑟𝑟𝜏𝜏 under the effect of a resolved shear stress 𝜏𝜏: 
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𝑟𝑟𝜏𝜏 = 𝛼𝛼0𝜇𝜇𝑏𝑏2

2𝜏𝜏
 (5) 

The force on an obstacle is given by:  

𝐹𝐹 = 𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1 + 𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃2 = 𝜇𝜇𝜇𝜇2𝜇𝜇0(𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃2) = (𝑏𝑏1+𝑏𝑏2)𝜏𝜏
𝜇𝜇𝑏𝑏𝛼𝛼0

 (6) 

The value of 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 ≤ 1. If the obstacle fails before 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = 1, it is called a weak obstacle. Weak 
dislocation junctions will unzip [13-15]. Weak precipitates will be cut. If 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 = 1, the moving 
dislocation will bow-out, remaining pinned on the original obstacle. This corresponds to the Orowan-
mechanism for dispersion hardening.  

Once a weak obstacle is passed, it no longer affects the length of the stored dislocations but the 
energy stored in the pinned configuration is liberated and dissipates in the form of phonons [30]. The 
corresponding transformation of mechanical energy into heat is a friction phenomenon. Strong 
obstacles modify the length distribution of the stored dislocations. The density of solute atoms, 
precipitates and particles (including non-shearable precipitates) is constant; the density of weak and 
strong dislocation junctions increases during strain hardening. 

If the spatial distribution of the obstacles is defined by a Poisson point process, the length 
distribution of the dislocation segments can be addressed by closed-form calculations [24]. 
Considering that, at a given stress 𝜏𝜏, no segment can be longer than 𝑠𝑠𝜏𝜏 = 2𝑟𝑟𝜏𝜏, it can be written that 
the number of dislocation segments released upon an increase of 𝜏𝜏 is [24]: 

𝑑𝑑𝑠𝑠 = − 𝜌𝜌𝑠𝑠
〈𝑏𝑏〉
𝑝𝑝𝐶𝐶(𝑠𝑠𝜏𝜏|𝜏𝜏)𝑑𝑑𝑠𝑠𝜏𝜏 (7) 

𝜌𝜌𝑏𝑏 is the dislocation density in each of the slip planes, which can be proven to be proportional to 
the amount of slip in this plane.  〈𝑠𝑠〉 is the average segment length and 𝑝𝑝𝐶𝐶(𝑠𝑠𝜏𝜏|𝜏𝜏) is the probability 
density of the segment lengths at a given value of 𝜏𝜏. Each bow-out event causes a sequence of new 
bow-outs which can be analysed by classical probability calculus [24]. The result is: 

𝑑𝑑𝜌𝜌𝑑𝑑
𝑑𝑑𝜏𝜏

= 𝜇𝜇𝑏𝑏𝛼𝛼0
𝜏𝜏2 �𝜑𝜑𝑐𝑐𝜌𝜌𝑑𝑑

3/2𝐾𝐾 �𝜇𝜇𝑏𝑏𝛼𝛼0
𝜏𝜏 �𝜑𝜑𝑐𝑐𝜌𝜌𝑑𝑑� (8) 

The full form of 𝐾𝐾(∙) takes a complete page and is given in the appendix of Ref. [24]; 𝜑𝜑𝑐𝑐 is the 
fraction of the dislocations that can form stable junctions with the dislocations in the slip system. It 
was proven that the Taylor equation 𝜏𝜏𝑦𝑦 = 𝜇𝜇𝜇𝜇𝜇𝜇�𝜌𝜌𝑑𝑑 solves this equation and that this solution is unique 
[23]. Non-shearable precipitates, with an effective slip plane density 𝜌𝜌𝑝𝑝,  modify the evolution as:  

𝑑𝑑𝜌𝜌𝑑𝑑
𝑑𝑑𝜏𝜏

= 𝜇𝜇𝑏𝑏𝛼𝛼0
𝜏𝜏2

𝜌𝜌𝑑𝑑
3/2�𝜑𝜑𝑐𝑐 + 𝜌𝜌𝑝𝑝

𝜌𝜌𝑑𝑑
𝐾𝐾 �𝜇𝜇𝑏𝑏𝛼𝛼0

𝜏𝜏 �𝜑𝜑𝑐𝑐𝜌𝜌𝑑𝑑 + 𝜌𝜌𝑝𝑝�                                                                      (9) 

The grain size effect can be accounted for by making a balance between the dislocations 
originating at the grain boundaries (GBs) and in the substructure and the ones absorbed by the GBs 
or stored/annihilated in the substructure [27]. Under the assumption that the storage and annihilation 
sites define independent Poisson point processes along the dislocation path, it was shown that: 

𝑑𝑑𝜌𝜌𝑑𝑑
𝑑𝑑𝑑𝑑

= 1
𝑏𝑏〈λ〉

�𝑘𝑘1�𝜑𝜑𝑐𝑐𝜌𝜌𝑑𝑑−𝑘𝑘2𝑏𝑏𝜑𝜑𝑠𝑠𝜌𝜌𝑑𝑑
𝑘𝑘1�𝜑𝜑𝑐𝑐𝜌𝜌𝑑𝑑+𝑘𝑘2𝑏𝑏𝜑𝜑𝑠𝑠𝜌𝜌𝑑𝑑

� (10) 

where 〈λ〉, the expected value of the slip length in presence of GBs, can be obtained by probability 
calculus [27]. It was found that: 

〈𝜆𝜆〉 = 𝑑𝑑𝑔𝑔�𝑘𝑘1�𝜑𝜑𝑐𝑐𝜌𝜌𝑑𝑑+𝑘𝑘2𝑏𝑏𝜑𝜑𝑠𝑠𝜌𝜌𝑑𝑑�
𝑑𝑑𝑔𝑔+𝑘𝑘1�𝜑𝜑𝑐𝑐𝜌𝜌𝑑𝑑+𝑘𝑘2𝑏𝑏𝜑𝜑𝑠𝑠𝜌𝜌𝑑𝑑

 (11) 
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The result is slightly generalised as compared to ref. [27], in the sense that in both the storage term 
and the annihilation term, the fraction of the dislocations crossing the slip plane (𝜑𝜑𝑐𝑐) and the fraction 
inside the slip plane (𝜑𝜑𝑏𝑏) are considered. Notice that 𝜑𝜑𝑏𝑏 ≠ 1 − 𝜑𝜑𝑐𝑐, because not all combinations of 
slip systems produce stable dislocation junctions [15,19]. 

With Eq. (9), the Taylor equation is no longer an exact solution. A numerical solution still provides 
a relationship between 𝜌𝜌𝑑𝑑 and 𝜏𝜏. Under the assumption that precipitates are randomly and 
independently distributed in the slip plane, Eqs. (10) and (11) can be recombined as: 

𝑑𝑑𝜌𝜌𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘1
�𝜑𝜑𝑐𝑐𝜌𝜌𝑑𝑑+𝜌𝜌𝑝𝑝

𝑏𝑏
− 𝑘𝑘2𝜑𝜑𝑏𝑏𝜌𝜌𝑑𝑑 + 1

𝑏𝑏𝑑𝑑𝑔𝑔
�
𝑘𝑘1�𝜑𝜑𝑐𝑐𝜌𝜌𝑑𝑑+𝜌𝜌𝑝𝑝−𝑘𝑘2𝑏𝑏𝜑𝜑𝑠𝑠𝜌𝜌𝑑𝑑
𝑘𝑘1�𝜑𝜑𝑐𝑐𝜌𝜌𝑑𝑑+𝜌𝜌𝑝𝑝+𝑘𝑘2𝑏𝑏𝜑𝜑𝑠𝑠𝜌𝜌𝑑𝑑

� (12) 

Eqs. (9) and (12) provide a set of two non-linear ordinary differential equations describing the 
evolution of the dislocation density on each slip system. While 𝜑𝜑𝑏𝑏 and 𝜑𝜑𝑑𝑑 are proportional to the 
activity of the slip systems as found from crystal plasticity models in the case of pure strain hardening, 
here it follows that less-active slip systems will have a higher strain hardening rate, as 𝜑𝜑𝑏𝑏 is lower 
and 𝜑𝜑𝑐𝑐 higher. Consequently, the set of equations must be solved for all slip systems simultaneously. 

Simulations  

To explore the relative importance of weak vs. strong obstacles, a software package was developed 
in which, after bow-out or unzipping, the dislocation samples the next closest obstacle to expand 
through the random field of points. This field is delimited by a circle of impenetrable obstacles 
defining the GB. The dislocation density is the inverse of the number of points 𝑠𝑠𝑝𝑝 in the Poisson 
process and value of 𝑟𝑟𝜏𝜏 defines the stress through Eq. (5). A higher value of 𝑠𝑠𝑝𝑝 corresponds to a higher 
dislocation density or a larger grain size.  The goal of these simulations is to gain an insight into the 
role of weak obstacles. To do so, their fraction is defined as 𝑓𝑓𝑤𝑤 and their strength, defined as 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃, 
follows a uniform distribution on [0,1]. Examples for 𝑓𝑓𝑤𝑤 = 0 and 1 are given in Fig. 1. 

 
Fig. 1. a) Geometry showing two circular dislocation segments blocked by a weak obstacle. The force 
on the obstacle is equal to the sum of the line tension vectors. Cutting of the obstacle will allow the 
dislocation to expand to the dashed configuration. b) Example of the percolation of a dislocation loop 
in a field of strong obstacles. c) With weak obstacles, the stored dislocation length is lower. 
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Fig. 2. Examples of 𝜏𝜏 − 𝛾𝛾 curves for different grain sizes and particle densities. 

To test the result of Eqs. (9) and (12), a fixed value of 𝜑𝜑𝑏𝑏 = 1/3 is used and 𝜑𝜑𝑐𝑐 = 2/3 and  
1/3 are tested, corresponding to three slip systems with equal activity and 100% and 50% strong 
junctions. No lattice friction is considered, which means that weak obstacles are not included in the 
analysis. The results show that the strain hardening rate is higher in small grains and that  
particle strengthening is less pronounced, clearly illustrating that strengthening effects are not 
additive. 

Conclusions 

A brief review was provided on the development of the concept of statistical micromechanics to 
describe the combined effects of hardening mechanisms in metals and alloys. An essential distinction 
must be made between strong and weak obstacles, with the latter contributing to the lattice friction 
and the former collectively contributing to strain hardening, in a non-additive manner. The theoretical 
analysis of strong obstacles and grain boundaries leads to a set of ordinary differential equations 
which produce realistic stress-strain curves and naturally including multi-slip in crystal plasticity.  
To eliminate the empirical approximation to lattice friction, the study of weak obstacles must be 
refined.  
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