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Abstract. This study presents a new mathematical model for determining the specific growth rate of 
biomass in biotechnological production processes, which aims to optimize the production of 
biotechnological products such as the advanced material polyhydroxyalkanoates. The specific growth 
rate is classified by the FDA as a critical process parameter that affects product quality and quantity, 
but is difficult for laboratory personnel to determine. Therefore, a simple and robust method for real-
time monitoring and control is crucial. According to the current state of the art, the established 
Luedeking-Piret model for determining the specific growth rate requires the determination of the 
biomass as an absolute value to initialize the model and to determine two further model parameters. 
However, determining the biomass is time-consuming and error-prone. The new relative model 
replaces this value with the relative change in biomass, which can be easily recorded using standard 
laboratory methods such as optical density measurement. This eliminates the need for time-
consuming and resource-intensive preliminary work. Despite this simplification, simulation tests 
have shown that the new model delivers identical results to the established model. It represents an 
independent, precise alternative and offers advantages in terms of handling. The results underline the 
model's potential to make bioprocesses more sustainable and efficient. Especially in research, 
material consumption, laboratory time and costs can be reduced compared to the established model. 
Future experiments will further investigate the performance of the new approach compared to the 
established model. 

Introduction 
The specific growth rate (further referred to as SGR or µ) is a key parameter in the cultivation of 
microorganisms in bioreactors. It describes the relative change in biomass per unit of time, 
normalized to the existing biomass. The SGR provides valuable information about the cellular state 
of the culture and is closely linked to the productivity of bioprocesses. [1,2]. Therefore, reliable 
monitoring of the SGR is essential for process control, regulation and optimization. In practice, 
however, determining the SGR is challenging. Common methods for direct measurement, such as dry 
weight determination of biomass, cell counting, optical density (OD600) or dielectric spectroscopy, 
are either invasive, delayed, time-consuming or prone to interferences. In addition, some techniques 
require complex calibrations that are highly dependent on the cell type and culture medium [3,4]. To 
overcome these limitations, model-based approaches are increasingly being used to indirectly 
estimate the SGR from online-accessible process variables. Both data-driven (e.g., artificial neural 
networks) and mechanistic models are employed in this context. While data-driven models can yield 
good results for specific processes, they typically require large training datasets and are generally not 
transferable to other systems [5,6]. Their use is therefore limited to well-known process conditions, 
which significantly restricts their applicability in dynamic process environments or in the 
development of new processes. In contrast, mechanistic models, such as the classical Luedeking-Piret 
model (LPM), are based on established process relationships involving online process variables like 
the oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER), and offer greater 
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transparency and robustness while maintaining good target variable prediction accuracy [7]. A major 
drawback, however, is that this model requires the absolute biomass as an input variable [8], a 
parameter that typically demands preliminary experiments to correlate it with a more easily 
measurable quantity, which is both time-consuming and error-prone [9,10]. 
The aim is the verification of a newly developed model for estimating the SGR that retains the 
advantages of the established LPM, but does not require the input of absolute biomass. Within the 
framework of a simulation-based batch cultivation of Escherichia coli, the study investigates whether 
the new model achieves the same result for the SGR as the LPE, while reducing measurement effort 
and offering greater practical applicability. 

Material and Methods 
Computer simulation. The model verification was carried out using a simulation with object pascal 
programming language within the RAD Studio integrated development environment. The simulation 
was performed with a fixed time interval of 10 seconds. It was designed to emulate a batch cultivation 
of E. coli, representing a complete bioprocess trajectory with realistic, yet varied phases [11]. A 
predefined, time-dependent SGR was applied, which is divided into the following phases as shown 
in Tab. 1:  

Table  1. Definition of simulated SGR phases and time intervals. 
Phase Time interval [h] µSim [1/h] 
lag 0:00 – 1:00 const. = 0.0 
acceleration 1:00 – 1:45 linearly increasing from 0.0 to 0.6  
log 1:45 – 6:00 const. = 0.6  
deceleration 6:00 – 6:50 

6:50 – 8:00 
linearly decreasing from 0.6 to 0.1  
const. = 0.1  

deceleration and death 8:00 – 8:30 linearly decreasing from 0.1 to -0.01 

where µSim [1/h] denotes the simulated SGR. Based on the simulated SGR, the temporal evolution of 
the absolute biomass was calculated using a population model Eq. 1: 

X(t) = X0 · e µ(t) · ∆t .                                (1) 

The oxygen uptake rate was subsequently determined based on the Luedeking-Piret Eq. 2 [12]: 

OUR(t) = µ(t) ∙ X(t) ∙ y + X(t) ∙ m.                   (2) 

Here, X [g] represents the simulated absolute biomass, X0 [g] is the initial biomass at the start of the 
simulation, and OUR [mol/h] is the simulated oxygen uptake rate. The parameter y [mol(O2)/g(X)] 
denotes the specific yield coefficient of the cell culture and describes how much oxygen is required 
to produce a certain amount of biomass. The parameter m [mol(O2)/g(X)/h] represents the specific 
oxygen demand for maintaining cellular activity independently of growth. Both parameters are 
assumed to be constant [13].  
The model parameters used are listed in Tab. 2, where y and m were selected based on typical literature 
values for E. coli and were slightly adjusted to reduce numerical inaccuracies during the batch 
simulation.  

Table  2.  Model parameters used for SGR simulation with the Luedeking-Piret model. 
Parameter Value  Dimension 
X0 5 g 
m 0.0036 g/mol/h 
y 0.04 g/mol 

Novel model. To verify the novel model, the ratio m/y [1/h] was used as the sole input parameter. 
Using this specific constant, the simulated OUR derived from the reference model according to 
Luedeking-Piret, was mathematically separated into growth-independent component OURm [mol/h] 
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and a growth-associated component OURy [mol/h]. This separation was performed according to the 
concept illustrated in Fig. 1: 

 
Fig 1. Signal flow diagram of the novel relative growth model with a differential, integral und 

proportional element to calculate the components of OUR without the need of X and with just one 
model parameter m/y. 

The ratio m/y is 0.09 1/h, as derived from Tab. 1. Based on the signal flow diagram in Fig. 1, the SGR 
in the novel model µEst [1/h] can be derived from the proportional relationship between OURm and X 
according to Eq. 1 leading to Eq. 3: 

µ = dOURm
dt

 ∙ 1
OURm

.                      (3) 

Model errors and agreement. To evaluate the performance of the newly developed model, the 
estimated SGR values were compared to the simulated SGR values. For this purpose, for statistical 
methods were used. The mean absolute error (MAE) measures the average absolute difference 
between the estimated and simulated SGR values and is calculated as:  

MAE = 1
n
∑ � ŷ(t) - y(t)�

n
t=0 .                    (4) 

The root mean square Error (RMSE) represents the square of the residuals of the differences between 
the estimated and simulated SGR values. The RMSE formula is as follows:  

RMSE = �1
n
∑ (ŷ(t) - y(t))

2n
t=0 .                   (5) 

The coefficient of determination (R²) of the linear regression was used to assess the goodness of fit 
between the estimated and simulated SGR values and was calculated as follows:   

R2 =
∑ (ŷ(t) -  y�)2n

t=0

∑ (y(t) -  y�)2n
t=0

,                            (6) 

where n is the number of data counts, ŷ(t) the values estimated by the novel model, y(t) the simulated 
reference values, and 𝑦𝑦�(t) the mean of the simulated values. Additionally, the slope a and the intercept 
b of the linear regression were determined to further assess the model`s accuracy: 

ŷ(t) = a ∙ y(t)+ b.                      (7) 

Results and Discussion 
Evaluation of SGR estimation errors and model agreement. Tab. 3 summarizes the results of the 
batch simulation, comparing the simulated SGR values and the estimated SGR values obtained from 
the novel approach: 
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Table  3. Summary of estimation accuracy and model agreement between the novel SGR estimator 
and the simulated reference in the batch cultivation process. 

MAE [1/h] RMSE [1/h] R2 Intercept [1/h] Slope 

0.00071 0.00084 1.00 -0.292561E-3 ± 0.010168E-3 0.99887 ± 0.000024 

 

The simulation results demonstrate excellent agreement between the novel model and the simulation. 
Both the MAE and the RMSE are in the range of 10⁻³ 1/h, which is significantly below the threshold 
of practical significance. These minor deviations are likely due to numerical rounding errors inherent 
in the differential equations applied, further emphasizing the numerical stability and robustness of the 
novel approach. 
The coefficient of determination (R²) is 1.00, indicating a perfect correlation between the estimated 
and the simulated SGR values. Linear regression analysis yields a slope of 0.99887 ± 0.000024 and 
an intercept of -0.000293 ± 0.000010 1/h, corresponding to an ideal relationship of ŷ(t) ≈ y(t). These 
results suggest that the model exhibits no systematic bias throughout the entire course of the simulated 
batch process. The graphical representation of the simulated batch process and the identity line in 
Fig. 2 visually confirms this finding. 
 

  
Fig 2.  E. coli batch simulation showing the OUR (dotted line), estimated SGR (dashed line) and 
simulated SGR (solid line) over time (left) and the identity line of estimated SGR and simulated 

SGR (right). OUR was computed from the simulated SGR using LPM and served as the input signal 
for estimating the SGR in the novel model. 

Throughout the entire batch process, the estimated SGR values follow the simulated SGR values. In 
all phases, from the lag phase to the death phase, the novel model remains stable and delivers accurate 
predictions of the SGR. Notably, the model accurately captures abrupt changes in SGR without any 
time delay. Furthermore, no discontinuities or singularities such as division by zero were observed 
that would require special treatment. 

Summary 
This study presented a novel model for estimating the SGR in bioprocesses that shows excellent 
agreement with the established Luedeking-Piret reference model, while eliminating the need for direct 
biomass measurement. The model achieved a MAE of 0.00071 1/h, a RMSE of 0.00084 1/h, and a R² 
of 1.00, with a relationship of ŷ(t) ≈ y(t). Unlike traditional approaches, the novel model relies solely 
on online-accessible process variables of bioprocesses, such as OUR or CER. They can be determined 
non-invasively via off-gas analysis, using measurements of the gas flow rate and the respective gas 
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concentration in the inlet and outlet gas streams. Due to its structural simplicity, the model requires 
only a single input parameter, the ratio m/y, which can be calibrated during the bioprocess based on 
known SGR values.  

Overall, the proposed model offers a precise, robust, ready to use and resource-efficient alternative 
for online SGR estimation. Its flexible design makes it broadly applicable under aerobic conditions, 
for both prokaryotic and eukaryotic cells and supports different cultivation modes.  

Outlook 
Further investigations are necessary to evaluate the performance of the novel model under real-world 
conditions. This includes assessing its robustness and accuracy in the presence of signal noise, 
incorrect parameter inputs and non-zero initial SGR (µ > 0). Moreover, experimental validation using 
real process data is essential to confirm the model's practical applicability. 
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