“Order-Order” Kinetics in Triple-Defect B2-Ordered Binary Intermetallics: Kinetic Monte Carlo Simulation


Article Preview

Triple-defect formation in B2-ordered binary A-B intermetallic compounds results fromthe asymmetry between the formation energies of A- and B-antisite defects. Chemical disorderingin such systems is strictly correlated with vacancy formation, which is the reason for usually veryhigh vacancy concentration. Consequently, Kinetic Monte Carlo (KMC) simulation of processes occurringin the triple-defect systems and controlled by atomic migration via vacancy mechanism mustinvolve complete vacancy thermodynamics – i.e. the simulated system must contain the equilibriumtemperature-dependent number of vacancies. The fully consistent approach based on two differentMonte Carlo techniques has been applied in the present study. The AB intermetallic was modelled withan Ising-type Hamiltonian and KMC simulated for “order-order” kinetics with temperature-dependentequilibrium number of vacancies previously determined by means of Semi Grand Canonical MonteCarlo (SGCMC) simulations. The procedure required in addition the determination of saddle -pointenergies assigned to particular atomic jumps to nn vacancies. Their values were estimated in relationto the nn pair-interaction energies with reference to Molecular Statics simulations performed for NiAlsystem with EAM energetics. The results elucidated the role of triple-defect formation as the atomisticscaleorigin of the experimentally observed surprisingly low rate of the “order-order” kinetics in bulkNiAl.



Edited by:

Prof. Rafal Abdank-Kozubski




A. Biborski et al., "“Order-Order” Kinetics in Triple-Defect B2-Ordered Binary Intermetallics: Kinetic Monte Carlo Simulation", Diffusion Foundations, Vol. 2, pp. 191-220, 2014

Online since:

September 2014




* - Corresponding Author

[1] D.B. Miracle, Acta Metall. Mater. 41, 649 (1993). D.B. Miracle, Acta Metall. Mater. 41, 649 (1993).

[2] D.B. Miracle and R. Darolia, Intermetallic Compounds: Structural Applications, edited by J.H. Westbrook and R.L. Fleischer (Wiley, New York, 2000), Vol. 4, p.55.

[3] G. Frommeyer, R. Rablbauer and H.J. Schaefer, Intermetallics 18, 299 (2010).

[4] R.J. Thompson, J. -C. Zhao and K.J. Hemker, Intermetallics 18, 796 (2010).

[5] G. P. Purja Pun and Y. Mishin, J. Phys.: Condens. Matter 22, 395403 (2010).

[6] H. -J. Freund, H. Kuhlenbeck and V. Staemmler, Rep. Prog. Phys. 59, 283 (1996).

[7] M.W. Finnis, A.Y. Lozovoi and A. Alavi, Annu. Rev. Mater. Res. 35, 167 (2005).

[8] J.A. Brown and Y. Mishin, Phys. Rev. B 67, 195414 (2003).

[9] J.A. Brown and Y. Mishin, Phys. Rev. B 69, 195407 (2004).

[10] I. Bennour, V. Maurice and P. Marcus, Surf. Interface Anal. 42, 581 (2010).

[11] M.A. Bestor, R.L. Martens, R.A. Holler and M.L. Weaveror, Intermetallics 18, 2159 (2010).

[12] K. Fadenberger, I.E. Gunduz, C. Tsotsos, M. Kokonou, S. Gravani, S. Brandstetter, A. Bergamaschi, B. Schmitt, P. H. Mayrhofer, C. C. Doumanidis and C. Rebholz, Appl. Phys. Lett. 97, 144101 (2010).

DOI: 10.1063/1.3485673

[13] V.K. Sutrakar and D. R. Mahapatra, Materials Letters 64, 879 (2010).

[14] A. Alavi, K. Mirabbaszadeh, P. Nayebi and E. Zaminpayma, Comput. Mater. Sci. 50, 10 (2010).

[15] A. W. Hassel, B. Bello-Rodriguez, A. J. Smith, Y. Chen and S. Milenkovic, Phys. Stat. Sol. B 247, 2380 (2010).

[16] Zheng Hui, Shen Liang and Bai Bin, Acta Phys. Chim. Sin., 25, 2351 (2009).

[17] A. Biborski, L. Zosiak, R. Kozubski, R. Sot and V. Pierron-Bohnes, Intermetallics 18, 2343 (2010).

DOI: 10.1016/j.intermet.2010.08.007

[18] E.V. Levchenko, A.V. Evteev, R. Kozubski, I. V. Belova and G.E. Murch, Phys. Chem. Chem. Phys. 13, 1214 (2011).

[19] C. Paduani, Solid State Commun. 150, 189 (2010).

[20] Qingchuan Xu and A. Van der Ven, Phys. Rev. B 81, 064303 (2010).

[21] K. A. Marino and E. A. Carter, Acta Mater. 58, 2726 (2010).

[22] K. A. Marino and E. A. Carter, Intermetallics 18, 1470 (2010).

[23] Jia-Xiang Shan, Tan-Bo Yu and Xian-Xiang Yu, Int. J. Mod. Phys. B: 24, 2743 (2010).

[24] B. Meyer and M. Fähnle, Phys. Rev. B 59, 6072 (1999).

[25] P.A. Korzhavyi, A.V. Ruban, A.Y. Lozovoi, Y.K. Vekilov, I.A. Abrikosov and B. Johanson, Phys. Rev. B 61, 6003 (2000).

DOI: 10.1103/physrevb.61.6003

[26] A.Y. Lozovoi and Y. Mishin, Phys. Rev. B 68, 184113 (2003).

[27] H. -E. Schaefer, K. Frenner and R. Würschum, Intermetallics 7, 277 (1999).

[28] R. Kozubski and W. Pfeiler, Acta Mater. 44, 1573 (1996).

[29] R. Kozubski, Prog. Mater. Sci. 41, 1 (1997).

[30] R. Kozubski, D. Kmieć, E. Partyka, and M. Danielewski, Intermetallics 11, 897 (2003).

DOI: 10.1016/s0966-9795(03)00099-2

[31] M. Nikiel and R. Kozubski, Intermetallics 25, 5, (2012).

[32] P. Oramus, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville and W. Pfeiler, Phys. Rev. B 63, 174109 (2001).

DOI: 10.1103/physrevb.63.174109

[33] P. Oramus, C. Massobrio, M. Kozłowski, R. Kozubski, V. Pierron-Bohnes, M.C. Cadeville and W. Pfeiler, Comput. Mater. Sci. 27, 186 (2003).

DOI: 10.1016/s0927-0256(02)00444-5

[34] A.B. Bortz, M.H. Kalos and L.J. Lebowitz, J. Comput. Phys. 17, 10 (1975).

[35] Y. Mishin, M. J. Mehl and D. A. Papaconstantopoulos, Phys. Rev. B 65, 224114 (2002).

[36] L. Verlet, Phys. Rev. 159, 98 (1967).

[37] H. -E. Schaefer, K. Frenner and R. Würschum, Phys. Rev. Lett. 82, 949 (1999).

[38] W. Püschl, H. Numakamura and W. Pfeiler, Alloy Physics: A Comprehensive Reference, edited by W. Pfeiler, (Wiley Verlag GmbH & Co. KgaA, 2007) p.173.

[39] A. Biborski, L. Zosiak, R. Kozubski and V. Pierron-Bohnes, Intermetallics, 17, 46 (2009).

DOI: 10.1016/j.intermet.2008.09.010

Fetching data from Crossref.
This may take some time to load.